1.2.4 Grammaires

Définition

Définition statique Une grammaire formelle est un quadruplet $\langle X, V, S, P \rangle$ où

Ch1. Introduction: panorama et rappels

- X est l'alphabet (du langage engendré)
- -V est un alphabet disjoint de X dit « non terminal »
- $-S \in V$ est un élément distingué de V, appelé axiome
- P est un ensemble de « règles (de production) », c'est-à-dire une partie finie du produit cartésien $(X \cup V)^*V(X \cup V)^* \times (X \cup V)^*$.

Exemple
$$\mathcal{G}_1 = \langle X, V, S, P \rangle$$
, avec : $X = \{l, c\}$
 $V = \{S, A\}$
 $P = \{(S, lA), (A, \varepsilon), (A, cA), (A, lA)\}$

Exemple
$$\mathcal{G}_2 = \langle \{(,)\}, \{S\}, S, \{S \longrightarrow \varepsilon \mid (S)S\} \rangle$$

Dérivation Soient $\mathcal{G} = \langle X, V, S, P \rangle$ une grammaire, $(f,g) \in (X \cup V)^*$, r une règle de production de P, de la forme $r: A \longrightarrow u$ $(A \in (X \cup V)^*V(X \cup V)^* \times (X \cup V)^*)$.

- f se **réécrit** (ou **dérive immédiatement**) en g avec la règle r (notation $f \xrightarrow{r} g$) ssi $\exists v. w$ t.g. f = vAw et g = vuw
- f se **réécrit** (ou **dérive**) en g dans la grammaire \mathcal{G} (notation $f \xrightarrow{\mathcal{G}} g$) ssi $\exists r \in P$ t.q. $f \xrightarrow{r} g$.

•
$$f \xrightarrow{\mathcal{G}*} g$$
 si $f = g$
 $\exists f_1 = f, f_2, ..., f_n = g \text{ t.q. } f_{i-1} \longrightarrow f_i$

On note $L_{\mathcal{G}}(f)$ l'ensemble des terminaux engendrés par f dans la grammaire \mathcal{G} .

$$L_{\mathcal{G}}(f) = \{ g \in X^* / f \xrightarrow{\mathcal{G}^*} g \}$$

Par convention, on notera $L_{\mathcal{G}}$ le langage $L_{\mathcal{G}}(S)$.

Exemple de dérivation (avec \mathcal{G}_2 plus haut) : $S \to (S)S \to$

Hiérarchie de Chomsky

type 0 Aucune restriction sur $P \subset (X \cup V)^*V(X \cup V)^* \times (X \cup V)^*$.

type 1 (grammaires contextuelles, context-sensitive) Tout élément de P est de la forme (u_1Su_2, u_1mu_2) , où u_1 et $u_2 \in (X \cup V)^*$, $S \in V$ et $m \in (X \cup V)^+$.

type 2 (grammaires algébriques, context-free) Tout élément de P est de la forme (S,m), où $S\in V$ et $m\in (X\cup V)^*$.

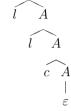
type 3 (grammaires régulières, context-free) Tout élément de P est de la forme (S,m), où $S\in V$ et $m\in X.V\cup X\cup \{\varepsilon\}$.

Arbre de dérivation

Exemple Reprenons la grammaire \mathcal{G}_1 , soit le mot llc.

$$\begin{array}{ccc} S & \longrightarrow & lA \\ A & \longrightarrow & \varepsilon \,|\, cA \,|\, lA \end{array}$$

à plat : $S \to lA \to llA \to llcA \to llc\varepsilon = llc$

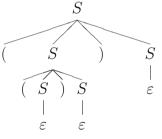


Exemple Grammaire \mathcal{G}_2 , soit le mot (()).

$$\langle \{(,)\}, \{S\}, S, \{S \longrightarrow \varepsilon \mid (S)S\} \rangle$$

$$S \to (S)S \to ((S)S)S \to ((S)S) \to ((S)) \to (())$$

On ne voit pas clairement quel non terminal fait l'objet de la réécriture.



Exercices

1. Soit la grammaire $\mathcal{G}_2 = \langle \{(,)\}, \{S\}, S, \{S \longrightarrow \varepsilon \mid (S)S\} \rangle$. Quel est le langage engendré par \mathcal{G}_2 ? Quel est le type de la grammaire \mathcal{G}_2 ?

2. Soit la grammaire
$$\mathcal{G}_3 = \langle \{a,b\}, \{S,A\}, S, P \rangle$$
, avec $P = \left\{ \begin{array}{l} S \longrightarrow aSb \mid bSa \mid A \\ A \longrightarrow \varepsilon \mid a \mid b, \\ bbA \longrightarrow \varepsilon \\ Aaa \longrightarrow Saa \mid aa \end{array} \right\}$

Quel est le type de cette grammaire? Donnez trois dérivations possibles dans cette grammaire.

- 3. Soit la grammaire $S \to S + S \mid S \times S \mid x \mid y \mid z$. Donnez tous les arbres syntaxiques possibles pour l'expression $x + y \times z$.
- 4. Soit la grammaire $S \to T2$ $(X = \{0,1\})$. $T \to 0T1C$ $T \to \varepsilon$ $C1 \to 1C$ $C2 \to 22$ $12 \to 1$

Est-ce que le mot 001122 est engendré par cette grammaire?