Syntax Let L_p be the language of propositional logic. The vocabulary of L_p comprises (i) a set of *proposition symbols* P, Q, R..., (ii) a unary connective \neg , (iii) binary connectives $\land, \lor, \rightarrow, \leftrightarrow$, and (iv) parenthesis (&).

The well formed formulae (wffs) of L_p are given by :

- (i). All proposition symbols are wffs.
- (ii). If φ is a wff of L_p , then $\neg \varphi$ is also a wff of L_p .
- (iii). If φ and ψ are wifts of L_p , then so are $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$, and $(\varphi \leftrightarrow \psi)$.
- (iv). Nothing else is a wff(Nothing that cannot be constructed by successive steps of (i), (ii) or (iii) is a wff).

 $\begin{array}{c} \left(\left(\neg (P \lor Q) \rightarrow \neg \neg \neg Q\right) \leftrightarrow R\right) \text{ (iii, } \leftrightarrow)\\ (\neg (P \lor Q) \rightarrow \neg \neg \neg Q) \text{ (iii, } \rightarrow) \quad R \text{ (i)}\\ \neg (P \lor Q) \text{ (ii)} \quad \neg \neg \neg Q \text{ (ii)}\\ P \text{ (i)} \quad Q \text{ (i)} \quad \neg \neg Q \text{ (ii)}\\ P \text{ (i)} \quad Q \text{ (i)} \quad \neg Q \text{ (ii)}\\ Q \text{ (i)} \end{array}\right)$

Semantics Let V be a *truth assignment* (or valuation) that maps all proposition symbols to a truth value (it can also be seen as a *model*). Then the truth value of any proposition can be defined/computed inductively as follows :

(i). If φ is a proposition symbol, then $\llbracket \varphi \rrbracket_V = V(\varphi)$; (ii). If φ is a wff, then $\llbracket \neg \varphi \rrbracket = 1$ if and only if $\llbracket \varphi \rrbracket = 0$; (iii). If φ and ψ are wffs, then $- \llbracket (\varphi \land \psi) \rrbracket = 1$ iff $\llbracket \varphi \rrbracket = 1$ and $\llbracket \psi \rrbracket = 1$; $- \llbracket (\varphi \lor \psi) \rrbracket = 0$ iff $\llbracket \varphi \rrbracket = 0$ and $\llbracket \psi \rrbracket = 0$; $- \llbracket (\varphi \to \psi) \rrbracket = 0$ iff $\llbracket \varphi \rrbracket = 1$ and $\llbracket \psi \rrbracket = 0$; $- \llbracket (\varphi \leftrightarrow \psi) \rrbracket = 1$ iff $\llbracket \varphi \rrbracket = \llbracket \psi \rrbracket$; $\frac{\varphi}{0} \frac{\neg \varphi}{0} \frac{\varphi}{0} \frac{\psi}{0} \frac{\varphi \land \psi}{0} \frac{\varphi \lor \psi \lor \psi}{0} \frac{\varphi \lor \psi}{0}$

Properties of formulae	A formula may be :	<mark>a tautology</mark>	always true
		a contradiction	always false
		$\operatorname{contingent}$	

These properties can be checked by computing the full truth table for the formula.

Relations between formulae

• Two formulae φ and	$l \ \psi \ may \ be :$
$\operatorname{contradictory}$	φ is true when ψ is false and vice-versa
contrary	φ and ψ are never true together (but may be false)
logically equivalent	φ and ψ always have the same truth value

• A formula ψ is a logical consequence of φ if : every time φ is true, ψ is also true. (We also say that φ entails ψ).

These relations can be determined by computing the values of the two formulae in the same (full) truth table.