Syntax Let L_{p} be the language of propositional logic. The vocabulary of L_{p} comprises (i) a set of proposition symbols $P, Q, R \ldots$, (ii) a unary connective \neg, (iii) binary connectives $\wedge, \vee, \rightarrow, \leftrightarrow$, and (iv) parenthesis (\&).
The well formed formulae (wffs) of L_{p} are given by :
(i). All proposition symbols are wffs.
(ii). If φ is a wff of L_{p}, then $\neg \varphi$ is also a wff of L_{p}.
(iii). If φ and ψ are wffs of L_{p}, then so are $(\varphi \wedge \psi),(\varphi \vee \psi),(\varphi \rightarrow \psi)$, and $(\varphi \leftrightarrow \psi)$.
(iv). Nothing else is a wff
(Nothing that cannot be constructed by successive steps of (i), (ii) or (iii) is a wff).

Semantics Let V be a truth assignment (or valuation) that maps all proposition symbols to a truth value (it can also be seen as a model). Then the truth value of any proposition can be defined/computed inductively as follows :
(i). If φ is a proposition symbol, then $\llbracket \varphi \rrbracket_{V}=V(\varphi)$;
(ii). If φ is a wff, then $\llbracket \neg \varphi \rrbracket=1$ if and only if $\llbracket \varphi \rrbracket=0$;
(iii). If φ and ψ are wffs, then
$-\llbracket(\varphi \wedge \psi) \rrbracket=1$ iff $\llbracket \varphi \rrbracket=1$ and $\llbracket \psi \rrbracket=1 ;$
$-\llbracket(\varphi \vee \psi) \rrbracket=0$ iff $\llbracket \varphi \rrbracket=0$ and $\llbracket \psi \rrbracket=0 ;$
$-\llbracket(\varphi \rightarrow \psi) \rrbracket=0$ iff $\llbracket \varphi \rrbracket=1$ and $\llbracket \psi \rrbracket=0 ;$
$-\llbracket(\varphi \leftrightarrow \psi) \rrbracket=1$ iff $\llbracket \varphi \rrbracket=\llbracket \psi \rrbracket ;$

φ	ψ	$\varphi \wedge \psi$
0	0	0
0	1	0
1	0	0
1	1	1

φ	ψ	$\varphi \vee \psi$
0	0	0
0	1	1
1	0	1
1	1	1

φ	ψ	$\varphi \rightarrow \psi$
0	0	1
0	1	1
1	0	0
1	1	1

φ	ψ	$\varphi \leftrightarrow \psi$
0	0	1
0	1	0
1	0	0
1	1	1

Properties of formulae A formula may be: a tautology always true a contradiction always false contingent
These properties can be checked by computing the full truth table for the formula.

Relations between formulae

- Two formulae φ and ψ may be :
contradictory $\quad \varphi$ is true when ψ is false and vice-versa
contrary $\quad \varphi$ and ψ are never true together (but may be false)
logically equivalent $\quad \varphi$ and ψ always have the same truth value
- A formula ψ is a logical consequence of φ if : every time φ is true, ψ is also true. (We also say that φ entails ψ).
These relations can be determined by computing the values of the two formulae in the same (full) truth table.

