Formal Languages and Linguistics

Pascal Amsili
Sorbonne Nouvelle, Lattice (CNRS/ENS-PSL/SN)

Cogmaster, september 2023

General introduction

1. Mathematicians (incl. Chomsky) have formalized the notion of language oversimplification ? maybe...
2. It buys us:
2.1 Tools to think about theoretical issues about language/s (expressiveness, complexity, comparability...)
2.2 Tools to manipulate concretely language (e.g. with computers)
2.3 A research programme:

- Represent the syntax of natural language in a fully unambiguously specified way

Now let's get familiar with the mathematical notion of language

Overview

Formal Languages
Basic concepts
Definition
Questions

Regular Languages

Formal Grammars

Formal complexity of Natural Languages

Alphabet, word

Def. 1 (Alphabet)
An alphabet Σ is a finite set of symbols (letters).
The size of the alphabet is the cardinal of the set.
Def. 2 (Word)
A word on the alphabet Σ is a finite sequence of letters from Σ. Formally, let $[p]=(1,2,3,4, \ldots, p)$ (ordered integer sequence). Then a word is a mapping

$$
u:[p] \longrightarrow \Sigma
$$

p, the length of u, is noted $|u|$.

Formal Languages and Linguistics
$\left\llcorner_{\text {Formal Languages }}\right.$
Basic concepts
Examples I
Alphabet $\{., \boldsymbol{-}\}$
Words

Alphabet \｛．＿，．．．，＿．－• ，－．，．，．．．$\}$
Words ．．．ーーー \cdot. －•••－••・ー・ ーーー ー －－－…－．．．•－•－－．．＿… •－

Examples II

$$
\begin{array}{ll}
\text { Alphabet } & \{0,1,2,3,4,5,6,7,8,9, \cdot\} \\
\text { Words } & 235 \cdot 29 \\
& 007 \cdot 12 \\
& \cdot 1 \cdot 1 \cdot 00 \cdots \\
& 3-1415962 \ldots(\pi)
\end{array}
$$

Alphabet $\{\mathrm{a}$, woman, loves, man \} Words a
a woman loves a woman man man a loves woman loves a

Monoid

Def. $3\left(\Sigma^{*}\right)$
Let Σ be an alphabet.
The set of all the words that can be formed with any number of letters from Σ is noted Σ^{*}
Σ^{*} includes a word with no letter, noted ε
Example: $\quad \Sigma=\{a, b, c\}$

$$
\Sigma^{*}=\{\varepsilon, a, b, c, a a, a b, a c, b a, \ldots, b b b, \ldots\}
$$

N.B.: Σ^{*} is always infinite, except...

Monoid

Def. $3\left(\Sigma^{*}\right)$
Let Σ be an alphabet.
The set of all the words that can be formed with any number of letters from Σ is noted Σ^{*}
Σ^{*} includes a word with no letter, noted ε
Example: $\quad \Sigma=\{a, b, c\}$

$$
\Sigma^{*}=\{\varepsilon, a, b, c, a a, a b, a c, b a, \ldots, b b b, \ldots\}
$$

N.B.: Σ^{*} is always infinite, except...

$$
\text { if } \Sigma=\emptyset \text {. Then } \Sigma^{*}=\{\varepsilon\} \text {. }
$$

Structure of \sum^{*}

Let k be the size of the alphabet $k=|\Sigma|$.

Then Σ^{*} contains : $k^{0}=1 \quad$ word(s) of 0 letters (ε) $k^{1}=k \quad \operatorname{word}(\mathrm{~s})$ of 1 letters $k^{2} \quad \operatorname{word}(s)$ of 2 letters
$k^{n} \quad$ words of n letters, $\forall n \geq 0$

Representation of \sum^{*}

$$
\Sigma=\{a, b, c\}
$$

- Words can be enumerated according to different orders
- Σ^{*} is a countable set

Concatenation

Σ^{*} can be equipped with a binary operation: concatenation
Def. 4 (Concatenation)
Let $[p] \xrightarrow{u} \Sigma,[q] \xrightarrow{w} \Sigma$. The concatenation of u and w, noted uw (u.w) is thus defined:

$$
\begin{array}{rll}
u w: & {[p+q] \longrightarrow \Sigma} & \\
& u w_{i}=\left\{\begin{array}{lll}
u_{i} & \text { for } & i \in[1, p] \\
w_{i-p} & \text { for } & i \in[p+1, p+q]
\end{array}\right.
\end{array}
$$

Concatenation

Σ^{*} can be equipped with a binary operation: concatenation
Def. 4 (Concatenation)
Let $[p] \xrightarrow{u} \Sigma,[q] \xrightarrow{w} \Sigma$. The concatenation of u and w, noted uw (u.w) is thus defined:

$$
\begin{array}{rll}
u w: & {[p+q] \longrightarrow \Sigma} & \\
& u w_{i}=\left\{\begin{array}{lll}
u_{i} & \text { for } & i \in[1, p] \\
w_{i-p} & \text { for } & i \in[p+1, p+q]
\end{array}\right.
\end{array}
$$

Example: u bacba
v cca

Concatenation

Σ^{*} can be equipped with a binary operation: concatenation
Def. 4 (Concatenation)
Let $[p] \xrightarrow{u} \Sigma,[q] \xrightarrow{w} \Sigma$. The concatenation of u and w, noted uw (u.w) is thus defined:

$$
\begin{array}{rll}
u w: & {[p+q] \longrightarrow \Sigma} & \\
& u w_{i}=\left\{\begin{array}{lll}
u_{i} & \text { for } & i \in[1, p] \\
w_{i-p} & \text { for } & i \in[p+1, p+q]
\end{array}\right.
\end{array}
$$

Example: u bacba
v cca
uv bacbacca

Factor

> Def. 5 (Factor) A factor w of u is a subset of adjascent letters in u. $\begin{array}{lll}-w & \text { is a factor of } u & \Leftrightarrow \\ -w \text { is a left factor (prefix) of } u & \Leftrightarrow \exists u_{1}, u_{2} \text { s.t. } u=u \\ -w \text { is a right factor (suffix) of } u & \Leftrightarrow \exists u_{2} \text { s.t. } u=w u_{2} \\ \text { s.t. } u=u_{1} w\end{array}$

Def. 6 (Factorization)
We call factorization the decomposition of a word into factors.

Role of concatenation

1. Words have been defined on Σ.

Given any two words, it's always possible to form a new word by concatenating them.
2. Any word can be factorised in many different ways:
$a b a c c a b$

Role of concatenation

1. Words have been defined on Σ.

Given any two words, it's always possible to form a new word by concatenating them.
2. Any word can be factorised in many different ways:
$a b a c c a b$
$(a b a)((a b)$

Role of concatenation

1. Words have been defined on Σ.

Given any two words, it's always possible to form a new word by concatenating them.
2. Any word can be factorised in many different ways:
$a b a c c a b$
$(a b)(\operatorname{a} c c)(a)$

Role of concatenation

1. Words have been defined on Σ.

Given any two words, it's always possible to form a new word by concatenating them.
2. Any word can be factorised in many different ways:
$a b a c c a b$
$(a b a c c)$ 白 b)

Role of concatenation

1. Words have been defined on Σ.

Given any two words, it's always possible to form a new word by concatenating them.
2. Any word can be factorised in many different ways:
$a b a c c a b$
$(a)(b)(a)()()(a)(b)$

Role of concatenation

1. Words have been defined on Σ.

Given any two words, it's always possible to form a new word by concatenating them.
2. Any word can be factorised in many different ways:
$a b a c c a b$
$(a)(b)(E)(E)()(b)$
3. Since all letters of Σ form a word of length 1 (this set of words is called the base),
4. Any word of Σ^{*} can be seen as a (unique) sequence of concatenations of length 1 words :
$a b a c c a b$
((((((ab)a)c)c)a)b)
$(((((a \cdot b) \cdot a) \cdot c) \cdot c) \cdot a) \cdot b)$

Properties of concatenation

1. Concatenation is non commutative
2. Concatenation is associative
3. Concatenation has an identity (neutral) element: ε
4. $u v . w \neq w . u v$
5. $(u . v) . w=u \cdot(v . w)$
6. $u . \varepsilon=\varepsilon . u=u$

Notation : a.a.a $=a^{3}$

Overview

Formal Languages
Basic concepts
Definition
Questions

Regular Languages

Formal Grammars

Formal complexity of Natural Languages

Language

Def. 7 (Formal Language)

Let Σ be an alphabet.
A language on Σ is a set of words on Σ.

Language

Def. 7 (Formal Language)

Let Σ be an alphabet.
A language on Σ is a set of words on Σ.
or, equivalently,
A language on Σ is a subset of Σ^{*}

Formal Languages and Linguistics
$\left\llcorner_{\text {Formal Languages }}\right.$
Definition

Examples I

$$
\text { Let } \Sigma=\{a, b, c\} \text {. }
$$

Formal Languages and Linguistics
$\left\llcorner_{\text {Formal Languages }}\right.$

Examples I

$$
\text { Let } \Sigma=\{a, b, c\} \text {. }
$$

$$
L_{1}=\{a a, a b, b a c\}
$$

Formal Languages and Linguistics
$\left\llcorner_{\text {Formal Languages }}\right.$

Examples I

$$
\text { Let } \Sigma=\{a, b, c\} \text {. }
$$

$$
\begin{array}{ll}
L_{1}=\{a a, a b, b a c\} & \text { finite language } \\
\hline L_{2}=\{a, a a, a a a, a a a a \ldots\} &
\end{array}
$$

Examples I

$$
\text { Let } \Sigma=\{a, b, c\} \text {. }
$$

$$
\begin{array}{rlr}
L_{1}= & \{a a, a b, b a c\} & \text { finite language } \\
\hline L_{2}= & \{a, a a, a a a, a a a \ldots\} & \\
& \text { or } L_{2}=\left\{a^{i} / i \geq 1\right\} & \text { infinite language } \\
\hline
\end{array}
$$

Examples I

$$
\text { Let } \Sigma=\{a, b, c\} \text {. }
$$

$$
\begin{aligned}
L_{1}=\{a a, a b, b a c\} & \text { finite language } \\
\hline L_{2}=\{a, a a, a a a, a a a a \ldots\} & \\
& \text { or } L_{2}=\left\{a^{i} / i \geq 1\right\}
\end{aligned} \text { infinite language } \quad \begin{array}{ll}
& \text { finite language, } \\
\hline L_{3}=\{\varepsilon\} & \\
& \text { reduced to a singleton } \\
\hline
\end{array}
$$

Examples I

$$
\text { Let } \Sigma=\{a, b, c\} \text {. }
$$

$L_{1}=\{a a, a b, b a c\}$	finite language
$L_{2}=\{a, a a, a a a, a a a \ldots\}$	
or $L_{2}=\left\{a^{i} / i \geq 1\right\}$	infinite language
$L_{3}=\{\varepsilon\}$	finite language,
	reduced to a singleton
	\neq

Examples I

$$
\text { Let } \Sigma=\{a, b, c\}
$$

$L_{1}=\{a a, a b, b a c\}$	finite language
$L_{2}=\{a, a a$, aaa, aaaa $\ldots\}$	
or $L_{2}=\left\{a^{i} / i \geq 1\right\}$	infinite language
$L_{3}=\{\varepsilon\}$	finite language,
reduced to a singleton	

Examples I

$$
\text { Let } \Sigma=\{a, b, c\}
$$

$L_{1}=\{a a, a b, b a c\}$	finite language
$L_{2}=\{a, a a, a a a, a a a a \ldots\}$	
or $L_{2}=\left\{a^{i} / i \geq 1\right\}$	infinite language
$L_{3}=\{\varepsilon\}$	finite language,
	reduced to a singleton
	"empty" language
$L_{4}=\emptyset$	
$L_{5}=\Sigma^{*}$	

Formal Languages and Linguistics
$\left\llcorner_{\text {Formal Languages }}\right.$
Definition

Examples II

Let $\Sigma=\{$ a, man, loves, woman $\}$.

Examples II

Let $\Sigma=\{$ a, man, loves, woman $\}$.
$L=\{$ a man loves a woman, a woman loves a man $\}$

Examples II

Let $\Sigma=\{$ a, man, loves, woman $\}$.
$L=\{$ a man loves a woman, a woman loves a man $\}$

Let $\Sigma^{\prime}=\{$ a, man, who, saw, fell $\}$.

Examples II

Let $\Sigma=\{$ a, man, loves, woman $\}$.
$L=\{$ a man loves a woman, a woman loves a man $\}$

Let $\Sigma^{\prime}=\{$ a, man, who, saw, fell $\}$.
$L^{\prime}=\left\{\begin{array}{l}\text { a man fell, } \\ \text { a man who saw a man fell, } \\ \text { a man who saw a man who saw a man fell, } \\ \ldots\end{array}\right\}$

Set operations

Since a language is a set, usual set operations can be defined:

- union
- intersection
- set difference

Set operations

Since a language is a set, usual set operations can be defined:

- union
- intersection
- set difference
\Rightarrow One may describe a (complex) language as the result of set operations on (simpler) languages:
$\left\{a^{2 k} / k \geqslant 1\right\}=\{a, a a$, aaa, aaaa,$\ldots\} \cap\left\{w w / w \in \Sigma^{*}\right\}$

Additional operations

Def. 8 (product operation on languages)
One can define the language product and its closure the Kleene star operation:

- The product of languages is thus defined:

$$
L_{1} \cdot L_{2}=\left\{u v / u \in L_{1} \& v \in L_{2}\right\}
$$

$$
k \text { times }
$$

Notation: $\overbrace{L . L . L \ldots L}=L^{k} ; L^{0}=\{\varepsilon\}$

- The Kleene star of a language is thus defined:

$$
L^{*}=\bigcup_{n \geqslant 0} L^{n}
$$

Overview

Formal Languages
Basic concepts
Definition
Questions

Regular Languages

Formal Grammars

Formal complexity of Natural Languages

Back to "Natural" Languages

English as a formal language:
alphabet: morphemes (often simplified to words -depending on your view on flexional morphology)
\Rightarrow Finite at a time t by hypothesis
words: well formed English sentences
\Rightarrow English sentences are all finite by hypothesis
language: English, as a set of an infinite number of well formed combinations of "letters" from the alphabet

Good questions

Why would one consider natural language as a formal language?

- it allows to describe the language in a formal/compact/elegant way
- it allows to compare various languages (via classes of languages established by mathematicians)
- it give algorithmic tools to recognize and to analyse words of a language.

> recognize u : decide whether $u \in L$ analyse $u \quad$: show the internal structure of u

Final remarks

- We are only talking about syntax
- From now on, we'll mostly be looking for precise and efficient ways to define a language
- $\mathrm{L}=\{a a, a b, b a\}$
- L $=$ \{ all the country names in English $\}$
- $\mathrm{L}=\{$ all the inflected forms of French manger $\}$
- $\mathrm{L}=\left\{a^{2^{k}}\right.$ with $\left.k \geq 0\right\}$
- $L=\left\{w w\right.$ with $\left.w \in \Sigma^{*}\right\}$
- L $=(\{a\} \cup\{b\} .\{c\})^{*}$ - simplified notation $(a \mid b c)^{*}$
- $\mathrm{L}=$ the set of words recognized by this automaton:
- L = the set of words engendered by this formal grammar

Sorbonne YF
Nouvelle
NF

Overview

Formal Languages

Regular Languages
Definition
Regular expressions
Automata
Properties

Formal Grammars

Formal complexity of Natural Languages

Definition

3 possible definitions

1. a regular language can be defined by rational/regular expressions
2. a regular language can be recognized by a finite automaton
3. a regular language can be generated by a regular grammar

Overview

Formal Languages

Regular Languages
Definition
Regular expressions
Automata
Properties

Formal Grammars

Formal complexity of Natural Languages

Regular expressions

It is common to use the 3 rational operations:

- union
- product
- Kleene star
to characterize certain languages...

Regular expressions

It is common to use the 3 rational operations:

- union
- product
- Kleene star
to characterize certain languages...

$$
\begin{aligned}
(\{a\} \cup\{b\})^{*} \cdot\{c\} & =\{c, a c, a b c, b c, \ldots, \text { baabaac, }, \ldots\} \\
& \text { (simplified notation }(a \mid b)^{*} c-\text { regular expressions) }
\end{aligned}
$$

Regular expressions

It is common to use the 3 rational operations:

- union
- product
- Kleene star
to characterize certain languages...
$(\{a\} \cup\{b\})^{*} .\{c\}=\{c, a c, a b c, b c, \ldots$, baabaac,$\ldots\}$
(simplified notation $(a \mid b)^{*} c$ - regular expressions)
... but not all languages can be thus characterized.

Def. 9 (Rational Language)
A rational language on Σ is a subset of Σ^{*} inductively defined thus:

- \emptyset and $\{\varepsilon\}$ are rational languages ;
- for all $a \in X$, the singleton $\{a\}$ is a rational language ;
- for all g and h rational, the sets $g \cup h, g . h$ and g^{*} are rational languages.

Overview

Formal Languages

Regular Languages
Definition
Regular expressions
Automata
Properties

Formal Grammars

Formal complexity of Natural Languages

Formal Languages and Linguistics
$\left\llcorner_{\text {Regular Languages }}\right.$
\square Automata

Metaphoric definition

Formal definition

Def. 10 (Finite deterministic automaton (FDA))
A finite state deterministic automaton \mathcal{A} is defined by :

$$
\mathcal{A}=\left\langle Q, \Sigma, q_{0}, F, \delta\right\rangle
$$

Q is a finite set of states
Σ is an alphabet
q_{0} is a distinguished state, the initial state,
F is a subset of Q, whose members are called final/terminal states
δ is a mapping fonction from $Q \times \Sigma$ to Q.
Notation $\delta(q, a)=r$.
$\left\llcorner_{\text {Regular Languages }}\right.$
\square Automata

Example

Let us consider the (finite) language $\{a a, a b, a b b, a c b a, a c c b\}$. The following automaton recognizes this langage: $\left\langle Q, \Sigma, q_{0}, F, \delta\right\rangle$, avec $Q=\{1,2,3,4,5,6,7\}, \Sigma=\{a, b, c\}, q_{0}=1, F=\{3,4\}$, and δ is thus defined:

$$
\begin{aligned}
& \delta: \quad(1, a) \mapsto 2 \\
& (2, a) \mapsto 3 \\
& (2, b) \mapsto 4 \\
& (2, c) \mapsto 5 \\
& (4, b) \mapsto 3 \\
& (5, b) \mapsto 6 \\
& (5, c) \mapsto 7 \\
& (6, a) \mapsto 3 \\
& (7, b) \mapsto 3
\end{aligned}
$$

	a	b	c
$\rightarrow 1$	2		
2	3	4	5
$\leftarrow 3$			
$\leftarrow 4$		3	
5		6	7
6	3		
7		3	

Sorbonne

Recognition

Recognition is defined as the existence of a sequence of states defined in the following way. Such a sequence is called a path in the automaton.

Def. 11 (Recognition)
A word $a_{1} a_{2} \ldots a_{n}$ is recognized/accepted by an automaton iff there exists a sequence $k_{0}, k_{1}, \ldots, k_{n}$ of states such that:

$$
\begin{aligned}
& k_{0}=q_{0} \\
& k_{n} \in F \\
& \forall i \in[1, n], \quad \delta\left(k_{i-1}, a_{i}\right)=k_{i}
\end{aligned}
$$

Formal Languages and Linguistics
Legular Languages
\llcorner Automata

Example

Sorbonne Yry Nouvelle

Exercices

Let $\Sigma=\{a, b, c\}$. Give deterministic finite state automata that accept the following languages:

1. The set of words with an even length.
2. The set of words where the number of occurrences of b is divisible by 3 .
3. The set of words ending with $a b$.
4. The set of words not ending with a b.
5. The set of words non empty not ending with a b.
6. The set of words comprising at least a b.
7. The set of words comprising at most a b.
8. The set of words comprising exactly one b.

Formal Languages and Linguistics

LFormal complexity of Natural Languages
-Are NL context-sensitive?

References I

Bar-Hillel, Yehoshua, Perles, Micha, \& Shamir, Eliahu. 1961. On formal properties of simple phrase structure grammars. STUF-Language Typology and Universals, 14(1-4), 143-172.
Chomsky, Noam. 1957. Syntactic Structures. Den Haag: Mouton \& Co.
Chomsky, Noam. 1995. The Minimalist Program. Vol. 28. Cambridge, Mass.: MIT Press.
Gazdar, Gerald, \& Pullum, Geoffrey K. 1985 (May). Computationally Relevant Properties of Natural Languages and Their Grammars. Tech. rept. Center for the Study of Language and Information, Leland Stanford Junior University.
Gibson, Edward, \& Thomas, James. 1997. The Complexity of Nested Structures in English: Evidence for the Syntactic Prediction Locality Theory of Linguistic Complexity. Unpublished manuscript, Massachusetts Institute of Technology.
Joshi, Aravind K. 1985. Tree Adjoining Grammars: How Much Context-Sensitivity is Required to Provide Reasonable Structural Descriptions? Tech. rept. Department of Computer and Information Science, University of Pennsylvania.
Langendoen, D Terence, \& Postal, Paul Martin. 1984. The vastness of natural languages. Basil Blackwell Oxford.
Mannell, Robert. 1999. Infinite number of sentences. part of a set of class notes on the Internet. http://clas.mq.edu.au/speech/infinite_sentences/.
Schieber, Stuart M. 1985. Evidence against the Context-Freeness of Natural Language. Linguistics and Philosophy, 8(3), 333-343.
Stabler, Edward P. 2011. Computational perspectives on minimalism. Oxford handbook of linguistic minimalism, 617-643.
Steedman, Mark, et al. . 2012 (June). Combinatory Categorial Grammars for Robust Natural Language Processing. Slides for NASSLLI course http://homepages.inf.ed.ac.uk/steedman/papers/ccg/nasslli12.pdf.
Vijay-Shanker, K., \& Weir, David J. 1994. The Equivalence of Four Extensions of Context-Free Grammars. Mathematical Systems Theory, 27, 511-546.

