# Formal Languages and Linguistics

Pascal Amsili

Sorbonne Nouvelle, Lattice (CNRS/ENS-PSL/SN)

Cogmaster, september 2023

,

#### Overview

Formal Languages

Regular Languages

Formal Grammars

Examples

Definition

Language classes

Formal complexity of Natural Languages

### Example I

$$\begin{array}{cccc} S & \rightarrow & A \, B \\ A & \rightarrow & a A \\ & \mid & b \\ B & \rightarrow & b B c \\ & \mid & \varepsilon \end{array}$$

- ► Rewriting system
- Auxiliary vocabulary (N for non-terminal)
- Start symbol (engendered language)
- ► Multiple derivations
- ► Syntactic tree

5 -> AB  $A \rightarrow a^{\dagger}b$  $A \rightarrow aA$ A -> 6 B -> 6 c B > bBC S -> AB 5 -> AB -> b 2 = {abbcm / m, m EN{ 5 - \* ab V= {b, ab, aab,...

# Example II

$$egin{array}{cccc} E & o & E + E \ & | & E imes E \ & | & (E) \ & | & 0 \, | \, 1 \, | \, 2 \dots 8 \, | \, 9 \end{array}$$

- ► Syntactic ambiguity
- ► Semantic interpretation

$$E \rightarrow E + E$$

$$V = \{E\}$$

$$E \rightarrow E \times E$$

$$E \rightarrow (E)$$

$$E \rightarrow 0|A|2|3...5$$

$$2 \times 3 + 1$$

E > E × E 
$$\rightarrow$$
 E × E + E  $\rightarrow$  2× E + E  $\rightarrow$  2× 3 + E  $\rightarrow$  2× 3 + 1  
E  $\rightarrow$  E × E  $\rightarrow$  E × E + E  $\rightarrow$  E × E + 1  $\rightarrow$  2 × 3 + 1  
Left - dirivation  
E  $\rightarrow$  E × E  $\rightarrow$  2× E  $\rightarrow$  2× E + E  $\rightarrow$  2× 3 + E  $\rightarrow$  2× 3 + 1

E -> E+E -> EXE+E-> 2×E+E -> 2×3+1

E > EXE -> 2x E -> 2x E+E -> 2x3+E-> 2x3+1 E > E+E - EXE+E- 2xE+E -> 2x3+1 2+7×/3+1)

$$E \rightarrow (E+E)$$

$$E \rightarrow (E\times E)$$

$$3+7\times 2$$

$$E \rightarrow 0(1...9)$$

T -> TXF IF

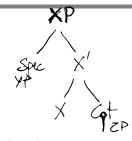
1011...3

F ->(E)

# Example III

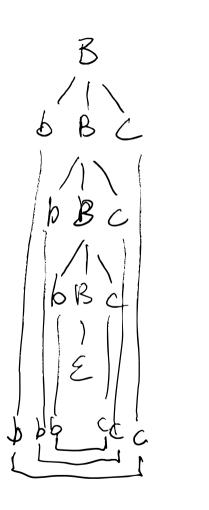
 $N' \rightarrow AdjP \ N'$   $N' \rightarrow N$   $N' \rightarrow N \ Cpt$   $AdjP \rightarrow Adj \ AdjP$   $AdjP \rightarrow Adj$   $Cpt \rightarrow P \ NP$   $Det \rightarrow the \mid my$   $N \rightarrow cat \mid friend$   $Adj \rightarrow large \mid fierce$   $Prep \rightarrow of \mid to$ 

 $NP \rightarrow Det N'$ 



- X-bar theory
- Recursive rules
- ► Center-embedding

the fierce friend of my at



#### Overview

Formal Languages

Regular Languages

Formal Grammars

Examples

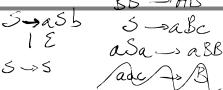
Definition

Language classes

Formal complexity of Natural Languages

SB -AB

Formal grammar



Def. 12 ((Formal) Grammar)

A formal grammar is defined by  $\langle \Sigma, N, S, P \rangle$  where

- $\triangleright$   $\Sigma$  is an alphabet
- ► *N* is a disjoint alphabet (non-terminal vocabulary)
- $\triangleright$   $S \in \mathbb{N}$  is a distinguished element of N, called the axiom
- ▶ P is a set of « production rules », namely a subset of the cartesian product  $(\Sigma \cup N)^*N(\Sigma \cup N)^* \times (\Sigma \cup N)^*$ .

#### Immediate Derivation

Def. 13 (Immediate derivation)

Let  $\mathcal{G} = \langle \Sigma, N, S, P \rangle$  a grammar,  $r \in P$  a production rule, such that  $r : A \longrightarrow u$  with  $u \in (\Sigma \cup N)^*$ ;  $f, g \in (\Sigma \cup N)^*$  two "(proto-)words",

- f derives into g (immediate derivation) with the rule r (noted  $f \stackrel{r}{\longrightarrow} g$ ) iff
  - $\exists v, w \text{ s.t. } f = vAw \text{ and } g = vuw$
- f derives into g (immediate derivation) in the grammar  $\mathcal{G}$  (noted  $f \xrightarrow{\mathcal{G}} g$ ) iff  $\exists r \in P \text{ s.t. } f \xrightarrow{r} g$ .

#### Derivation

```
Def. 14 (Derivation)
f \xrightarrow{\mathcal{G}*} g \text{ if } f = g \qquad \text{or}
\exists f_0, f_1, f_2, ..., f_n \text{ s.t.}
f_0 = f
f_n = g
\forall i \in [1, n] : f_{i-1} \xrightarrow{\mathcal{G}} f_i
```

# Engendered language

Def. 15 (Language engendered by a word)

Let 
$$f \in (\Sigma \cup N)^*$$
.

$$L_{\mathcal{G}}(f) = \{ g \in \mathbf{Z}^* / f \xrightarrow{\mathcal{G}_*} g \}$$

Def. 16 (Language engendered by a grammar)

The language engendered by a grammar  $\mathcal G$  is the set of words of  $\Sigma^*$  derived from the axiom.

$$L_{\mathcal{G}}=L_{\mathcal{G}}(S)$$

### Overview

Formal Languages

Regular Languages

Formal Grammars

Examples Definition

Language classes

Formal complexity of Natural Languages

Define language families on the basis of properties of the grammars that generate them :

- 1. Four classes are defined, they are included one in another
- 2. A language is of type k if it can be recognized by a type k grammar (and thus, by definition, by a type k-1 grammar); and <u>cannot</u> be recognized by a grammar of type k+1.



Formal Languages and Linguistics

Chomsky's hierarchy Schutzenberger

type 0 No restriction on  $P \subset (X \cup V)^* V(X \cup V)^* \times (X \cup V)^*$ . type 1 (*context-sensitive* grammars) All rules of P are of the

shape  $(u_1Su_2, u_1mu_2)$ , where  $u_1$  and  $u_2 \in (X \cup V)^*$ ,  $S \in V$  and  $m \in (X \cup V)^+$ . type 2 (context-free grammar) All rules of P are of the

shape (S, m), where  $S \in V$  and  $m \in (X \cup V)^*$ .

type 3 (regular grammars) All rules of P are of the shape (S, m), where  $S \in V$  and  $m \in X.V \cup X \cup \{\varepsilon\}$ .

bonne ; ; uvelle ; ; ; axioum: X S aab

# Examples

```
type 3:  S \rightarrow aS \mid aB \mid bB \mid cA \\ B \rightarrow bB \mid b \\ A \rightarrow cS \mid bB
```

### Examples

```
type 3:

S \rightarrow aS \mid aB \mid bB \mid cA

B \rightarrow bB \mid b

A \rightarrow cS \mid bB
```

type 2: 
$$E \rightarrow E + T \mid T, T \rightarrow T \times F \mid F, F \rightarrow (E) \mid a$$

```
Formal Languages and Linguistics

Formal Grammars

Language classes
```

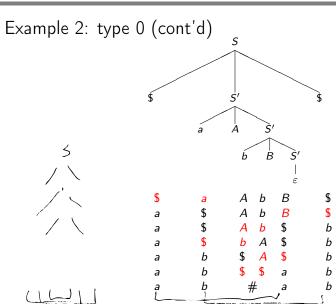
Example 1 type 0 ARC Type 0:  $S \rightarrow SABC \quad AC \rightarrow CA \quad A \rightarrow a$  $S \rightarrow \varepsilon$  $CA \rightarrow AC \quad B \rightarrow b$  $BC o CB \quad C o c$  $AB \rightarrow BA$  $CB \rightarrow BC$  $BA \rightarrow AB$ generated language:

### Example 1 type 0

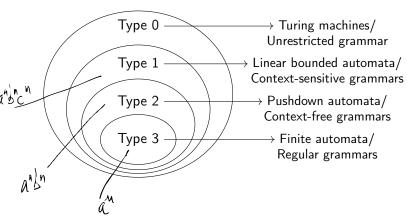
```
Type 0: S \rightarrow SABC \quad AC \rightarrow CA \quad A \rightarrow a \\ S \rightarrow \varepsilon \qquad CA \rightarrow AC \quad B \rightarrow b \\ AB \rightarrow BA \qquad BC \rightarrow CB \quad C \rightarrow c \\ BA \rightarrow AB \qquad CB \rightarrow BC \\ \text{generated language: words with an equal number of } a, b, \text{ and } c.
```

### Example 2: type 0

Type 0: 
$$S \rightarrow \$S'\$$$
  $Aa \rightarrow aA$   $\$a \rightarrow a\$$   $S' \rightarrow aAS'$   $Ab \rightarrow bA$   $\$b \rightarrow b\$$   $S' \rightarrow bBS'$   $Ba \rightarrow aB$   $A\$ \rightarrow \$a$   $S' \rightarrow \varepsilon$   $Bb \rightarrow bB$   $B\$ \rightarrow \$b$   $\$\$ \rightarrow \$b$ 



# The Chomsky-Schützenberger hierarchy



#### Remarks

- ► Type 0 (Turing-recognizable) = recursively enumerable languages
  - Type 1 (Turing-decidable) = recursive languages
- ► There are others ways to classify languages,
  - either on other properties of the grammars;
  - ► or on other properties of the languages
- Nested structures are preferred, but it's not necessary

# The parsing problem: finding derivations

- ▶ Given a grammar G on some alphabet  $\Sigma$ ...
- ightharpoonup The parsing problem for G:

Given some  $w \in \Sigma$ , what are the derivations (if any) of w in G?

▶ (Solving the parsing problem for G entails solving the recognition problem for  $\mathcal{L}(G)$ .)

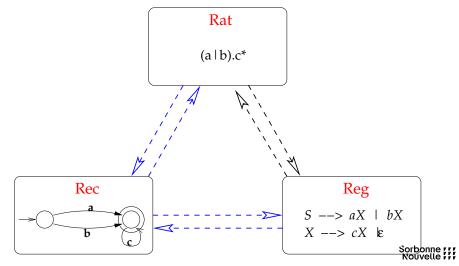
# Syntactic complexity vs semantic expressivity

- ► Context-free grammars are commonly used to describe the syntax of many logical languages ( PL, FOL), some programming languages, and parts of NL (→ Day 2).
- ▶ Untyped  $\lambda$ -calculus: CF syntax, Turing-complete semantics. "How is this possible?"
- ► → The syntactic complexity and the semantic expressivity of interpreted languages are two distinct notions.
- ▶ Jot (https://en.wikipedia.org/wiki/Iota\_and\_Jot) is  $\{0,1\}$ , a regular language, compositionally interpreted as a Turing-complete language.

# The recognition/parsing problems are very general

- ► Consider any binary ("yes/no") problem *P* and see it as the set of inputs for which the answer is positive.
- ▶ Let str be a linearisation function for the possible inputs of P, and  $L = \{str(in) \mid in \in P\}$ .
- $\triangleright$  Solving *P* is equivalent to the recognition problem for *L*.
- More generally, any computable function f can be encoded as a grammar s.t. after parsing the input w, the output f(w) can be read off the derivation.
- ► → One can compute "syntactically": a grammar is a program. (The parser is the machine that runs it.)
- ► The formalism of unrestricted grammars is a Turing-complete programming language. (syntactically regular?)

# Back to regular languages



### Let's play with grammars

For each of the following grammars, give the generated language, and the type they have in Chomsky's hierarchy.

# Let's play with grammars (cont'd)

Give a contex-free grammar that generates each of the following languages (alphabet  $\Sigma = \{a, b, c\}$ ).

- ►  $L_0 = \{ w \in X^* / w = a^n : n > 0 \}$
- ►  $L'_0 = \{ w \in X^* / w = a^n b^n ca ; n \ge 0 \}$
- ►  $L_1 = \{ w \in X^* / w = a^n b^n c^p : n > 0 \text{ et } p > 0 \}$
- ►  $L_2 = \{ w \in X^* / w = a^n b^n a^m b^m; n, m > 1 \}$
- $L_3' = \{ w \in X^* / |w|_a = |w|_b \}$
- $\blacktriangleright L_3 = \{ w \in X^* / |w|_a = 2|w|_b \}$
- $\blacktriangleright$   $L_4 = \{ w \in X^* / \exists x \in X^* \text{ tg } w = x\overline{x} \}$
- $\blacktriangleright L_5 = \{w \in X^* / w = \overline{w}\}$

Formal Languages and Linguistics

Formal complexity of Natural Languages

Are NL context-sensitive?

#### References I

- Bar-Hillel, Yehoshua, Perles, Micha, & Shamir, Eliahu. 1961. On formal properties of simple phrase structure grammars. *STUF-Language Typology and Universals*, 14(1-4), 143-172.
- Chomsky, Noam. 1957. Syntactic Structures. Den Haag: Mouton & Co.
- Chomsky, Noam. 1995. The Minimalist Program. Vol. 28. Cambridge, Mass.: MIT Press.
- Gazdar, Gerald, & Pullum, Geoffrey K. 1985 (May). Computationally Relevant Properties of Natural Languages and Their Grammars. Tech. rept. Center for the Study of Language and Information, Leland Stanford Junior University.
- Gibson, Edward, & Thomas, James. 1997. The Complexity of Nested Structures in English: Evidence for the Syntactic Prediction Locality Theory of Linguistic Complexity. Unpublished manuscript, Massachusetts Institute of Technology.
- Joshi, Aravind K. 1985. Tree Adjoining Grammars: How Much Context-Sensitivity is Required to Provide Reasonable Structural Descriptions? Tech. rept. Department of Computer and Information Science, University of Pennsylvania.
- Langendoen, D Terence, & Postal, Paul Martin. 1984. The vastness of natural languages. Basil Blackwell Oxford.
- Mannell, Robert. 1999. *Infinite number of sentences*. part of a set of class notes on the Internet. http://clas.mg.edu.au/speech/infinite\_sentences/.
- Schieber, Stuart M. 1985. Evidence against the Context-Freeness of Natural Language. Linguistics and Philosophy, 8(3), 333–343.
- Stabler, Edward P. 2011. Computational perspectives on minimalism. Oxford handbook of linguistic minimalism, 617–643.
- Steedman, Mark, et al. . 2012 (June). Combinatory Categorial Grammars for Robust Natural Language Processing. Slides for NASSLLI course
  - http://homepages.inf.ed.ac.uk/steedman/papers/ccg/nasslli12.pdf.
- Vijay-Shanker, K., & Weir, David J. 1994. The Equivalence of Four Extensions of Context-Free Grammars. *Mathematical Systems Theory*, 27, 511-546.

