Pascal Amsili

Sorbonne Nouvelle, Lattice (CNRS/ENS-PSL/SN)

Cogmaster, september 2023

1

Sorbonne ;;; Nouvelle ;;;

1/107

-Formal Grammars

Examples

Overview

Formal Languages

Regular Languages

Formal Grammars Examples Definition Language classes

Formal complexity of Natural Languages

Sorbonne ;;;

– Formal Grammars

Examples

Example I

- Rewriting system
- Auxiliary vocabulary (N for non-terminal)
- Start symbol (engendered language)
- Multiple derivations
- ► Syntactic tree

S -> AB A -> ab A -> aA A -> 5 B -> b^m c^m B -> bBC 12 S-AB S -> AB -> b $\lambda = abbc m m \in \mathbb{N}$ 5 - *ab X= {b, ab, aab,...

— Formal Grammars

Examples

Example II

$$\begin{array}{rrrr} E & \rightarrow & E+E \\ & \mid & E \times E \\ & \mid & (E) \\ & \mid & 0 \mid 1 \mid 2 \dots 8 \mid 9 \end{array}$$

- Syntactic ambiguity
- Semantic interpretation

Sorbonne ;;; Nouvelle ;;;

56 / 107

$$E \to E + E \qquad \sum_{k=1}^{\infty} \{0, 2, 2, \dots, +, k, (k, k\} \}$$

$$E \to E \times E \qquad N = \{E\}$$

$$E \to (E) \qquad \frac{2 \times 3}{2 \times 3 + 1}$$

 $E \rightarrow E \times E \rightarrow E \times E + E \rightarrow 2 \times E + E \rightarrow 2 \times 3 + E \rightarrow 2 \times 3 + 1$ $e \rightarrow E \times E \rightarrow E \times E + E \rightarrow E \times E + 1 \rightarrow 2 \times E + 1 \rightarrow 2 \times 3 + 1$ $e \rightarrow E \times E \rightarrow 2 \times E \rightarrow 2 \times E + E \rightarrow 2 \times 3 + E \rightarrow 2 \times 3 + 1$ $E \rightarrow E + E \rightarrow E \times E + E \rightarrow 2 \times E + E \rightarrow 2 \times 3 + E \rightarrow 2 \times 3 + 1$

E > EXE -> 2×E -> 2×E+E -> 2×3+E -> 2×3+1 E -> E+ E -> EXE+ E-> 2x E+ È -> 2x 3+ E -> 2x3+ [2+7×(3+1) 2x3+1=7(2x3)+1 = 7Ì) X

 $E \rightarrow (E + E)$ E -> (E KE) E ~ 0/1 ... 9

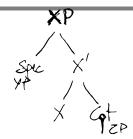
3+7×2

 $X : \mathcal{N}$

Examples

Example III

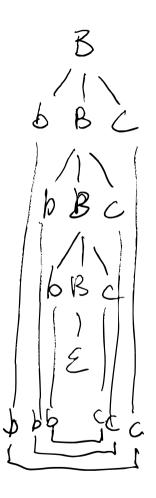
NP	\rightarrow	Det N'
N′	\rightarrow	AdjP N'
N′	\rightarrow	N
N′	\rightarrow	N Cpt
AdjP	\rightarrow	Adj AdjP
AdjP	\rightarrow	Adj
Cpt	\rightarrow	P NP
Det	\rightarrow	the my
Ν	\rightarrow	cat friend
Adj	\rightarrow	large fierce
Prep	\rightarrow	of to



- ► X-bar theory
- Recursive rules
- Center-embedding

the fierce fierd of my cat

Sorbonne ;;; Nouvelle ;;;



Formal Languages and Linguistics └─Formal Grammars

Definition

Overview

Formal Languages

Regular Languages

Formal Grammars Examples Definition Language classes

Formal complexity of Natural Languages

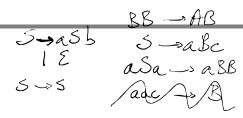
Sorbonne ;;;

58 / 107

-Formal Grammars

Definition

Formal grammar



Def. 12 ((Formal) Grammar)

A formal grammar is defined by $\langle \Sigma, N, S, P \rangle$ where

- Σ is an alphabet
- ► *N* is a disjoint alphabet (non-terminal vocabulary)
- $S \in \mathbf{N}$ is a distinguished element of N, called the *axiom*
- P is a set of « production rules », namely a subset of the cartesian product (Σ ∪ N)*N(Σ ∪ N)* × (Σ ∪ N)*.

Definition

Immediate Derivation

Def. 13 (Immediate derivation) Let $\mathcal{G} = \langle \Sigma, N, S, P \rangle$ a grammar, $r \in P$ a production rule, such that $r : A \longrightarrow u$ with $u \in (\Sigma \cup N)^*$; $f, g \in (\Sigma \cup N)^*$ two "(proto-)words",

- f derives into g (immediate derivation) with the rule r (noted f → g) iff ∃v, w s.t. f = vAw and g = vuw
- f derives into g (immediate derivation) in the grammar \mathcal{G} (noted $f \xrightarrow{\mathcal{G}} g$) iff $\exists r \in P \text{ s.t. } f \xrightarrow{r} g$.

Formal Languages and Linguistics Formal Grammars Definition

Derivation

Def. 14 (Derivation)

$$f \xrightarrow{\mathcal{G}_*} g$$
 if $f = g$ or
 $\exists f_0, f_1, f_2, ..., f_n$ s.t.
 $f_0 = f$
 $f_n = g$
 $\forall i \in [1, n] : f_{i-1} \xrightarrow{\mathcal{G}} f_i$

Engendered language

Def. 15 (Language engendered by a word)
Let
$$f \in (\Sigma \cup N)^*$$
.
 $L_{\mathcal{G}}(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}_*} g\}$

Def. 16 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^* derived from the axiom.

 $L_{\mathcal{G}}=L_{\mathcal{G}}(S)$

-Formal Grammars

Language classes

Overview

Formal Languages

Regular Languages

Formal Grammars Examples

> Definition Language classes

Formal complexity of Natural Languages

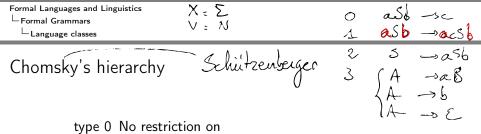
Sorbonne III Nouvelle III

63 / 107

Formal Languages and Linguistics └─Formal Grammars	Ø	
Language classes	1	\$ 7
Principle	2 3	aba saa . B->C A->ah (SoA)

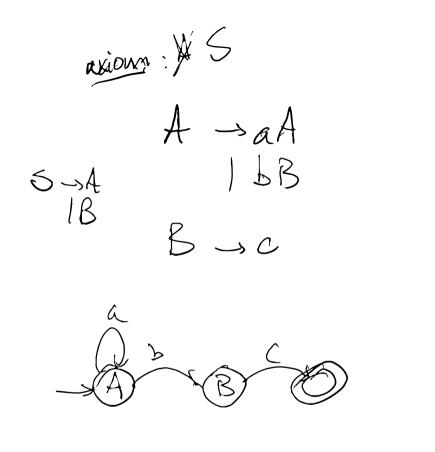
Define language families on the basis of properties of the grammars that generate them :

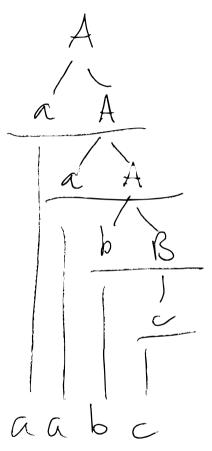
- 1. Four classes are defined, they are included one in another
- 2. A language is of type k if it can be recognized by a type k grammar (and thus, by definition, by a type k 1 grammar); and cannot be recognized by a grammar of type k + 1.



- $P \subset (X \cup V)^* V (X \cup V)^* \times (X \cup V)^*.$
- type 1 (*context-sensitive* grammars) All rules of *P* are of the shape (u_1Su_2, u_1mu_2) , where u_1 and $u_2 \in (X \cup V)^*$, $S \in V$ and $m \in (X \cup V)^+$.
- type 2 (*context-free* grammar) All rules of P are of the shape (S, m), where $S \in V$ and $m \in (X \cup V)^*$.
- type 3 (*regular* grammars) All rules of P are of the shape (S, m), where $S \in V$ and $m \in X.V \cup X \cup \{\varepsilon\}$.

A -> aA M. Su, ~ M. M. M.





-Formal Grammars

Language classes

Examples

type 3: $S \rightarrow aS \mid aB \mid bB \mid cA$ $B \rightarrow bB \mid b$ $A \rightarrow cS \mid bB$

Sorbonne ;;;

-Formal Grammars

Language classes

Examples

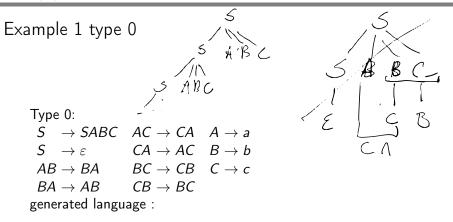
type 3: $S \rightarrow aS \mid aB \mid bB \mid cA$ $B \rightarrow bB \mid b$ $A \rightarrow cS \mid bB$

type 2: $E \rightarrow E + T \mid T, T \rightarrow T \times F \mid F, F \rightarrow (E) \mid a$

> Sorbonne III Nouvelle

-Formal Grammars

Language classes



5 -> SABC -> ABC -> BAC -> BCA - Sbox

-Formal Grammars

Language classes

Type 0: $S \rightarrow SABC \quad AC \rightarrow CA \quad A \rightarrow a$ $S \rightarrow \varepsilon \qquad CA \rightarrow AC \quad B \rightarrow b$ $AB \rightarrow BA \qquad BC \rightarrow CB \quad C \rightarrow c$ $BA \rightarrow AB \qquad CB \rightarrow BC$

generated language : words with an equal number of a, b, and c.

Sorbonne III Nouvelle III

-Formal Grammars

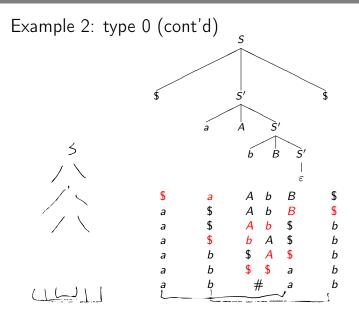
Language classes

Example 2: type 0

> Sorbonne III Nouvelle III

-Formal Grammars

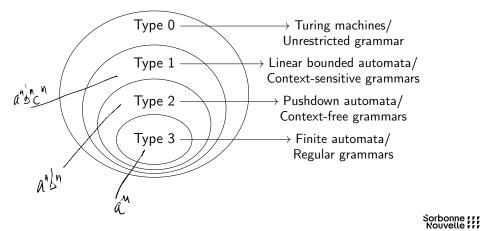
Language classes



Sorbonne ;;;

S-asb 1E

The Chomsky-Schützenberger hierarchy



- Formal Grammars

Language classes

Remarks

 Type 0 (Turing-recognizable) = recursively enumerable languages

Type 1 (Turing-decidable) = recursive languages

- There are others ways to classify languages,
 - either on other properties of the grammars;
 - or on other properties of the languages
- Nested structures are preferred, but it's not necessary

Language classes

The parsing problem: finding derivations

• Given a grammar G on some alphabet Σ ...

• The parsing problem for G: Given some $w \in \Sigma^{k}$

what are the derivations (if any) of w in G?

► (Solving the parsing problem for G entails solving the recognition problem for L(G).)

Syntactic complexity vs semantic expressivity

- Context-free grammars are commonly used to describe the syntax of many logical languages (PL, FOL), some programming languages, and parts of NL (→ Day 2).
- Untyped λ-calculus: CF syntax, Turing-complete semantics.
 "How is this possible?"
- ► → The syntactic complexity and the semantic expressivity of interpreted languages are two distinct notions.
- ► Jot (https://en.wikipedia.org/wiki/Iota_and_Jot) is {0, 1}, a regular language, compositionally interpreted as a Turing-complete language.

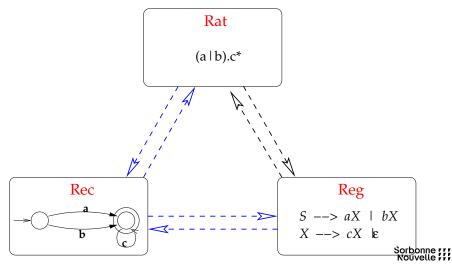
The recognition/parsing problems are very general

- Consider any binary ("yes/no") problem P and see it as the set of inputs for which the answer is positive.
- Let str be a linearisation function for the possible inputs of P, and L = {str(in) | in ∈ P}.
- ► Solving *P* is equivalent to the recognition problem for *L*.
- ► More generally, any computable function f can be encoded as a grammar s.t. after parsing the input w, the output f(w) can be read off the derivation.
- \blacktriangleright \rightarrow One can compute "syntactically": a grammar is a program. (The parser is the machine that runs it.)
- The formalism of unrestricted grammars is a Turing-complete programming language. (syntactically regular?) Sort

-Formal Grammars

Language classes

Back to regular languages



Language classes

Let's play with grammars

For each of the following grammars, give the generated language, and the type they have in Chomsky's hierarchy.

Sorbonne III Nouvelle III

-Formal Grammars

Language classes

Let's play with grammars (cont'd)

Give a contex-free grammar that generates each of the following languages (alphabet $\Sigma = \{a, b, c\}$).

▶
$$L_0 = \{w \in \mathbb{X}^* \mid w = a^n ; n \ge 0\}$$

▶ $L'_0 = \{w \in \mathbb{X}^* \mid w = a^n b^n ca ; n \ge 0\}$
▶ $L_1 = \{w \in \mathbb{X}^* \mid w = a^n b^n c^p ; n > 0 \text{ et } p > 0\}$
▶ $L_2 = \{w \in X^* \mid w = a^n b^n a^m b^m ; n, m \ge 1\}$ $\implies A \rightarrow AA$
▶ $L'_3 = \{w \in X^* \mid |w|_a = |w]_b\}$ $A \rightarrow AA$
▶ $L_3 = \{w \in X^* \mid |w|_a = 2|w]_b\}$
▶ $L_4 = \{w \in X^* \mid \exists x \in X^* \text{ tq } w = x\overline{x}\}$
▶ $L_5 = \{w \in X^* \mid w = \overline{w}\}$ $A \Rightarrow AA$
▶ $L_5 = \{w \in X^* \mid w = \overline{w}\}$ $A \Rightarrow AA$
▶ $L_5 = \{w \in X^* \mid w = \overline{w}\}$ $A \Rightarrow AA$
▶ $L_5 = \{w \in X^* \mid w = \overline{w}\}$ $A \Rightarrow AA$
 A

 $L_0 : a^n$ $5 \rightarrow 5a$

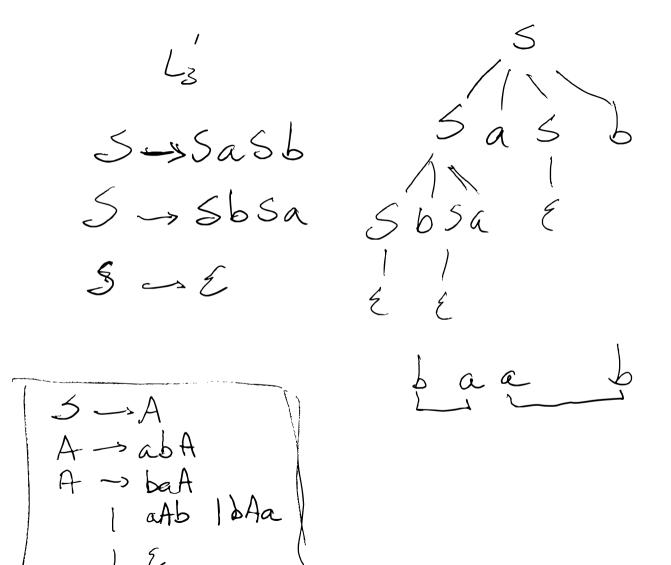
5-sSa s Saa s Saaa s. aaa

5->E

5->a

abbrca S L A 5 -> aS6A $\sqrt{\frac{1}{ca}}$ \rightarrow $\left\{ \begin{array}{c} 1\\ \varepsilon\\ 1\\ \end{array} \right\}$ $S \longrightarrow \mathcal{E}$ _> < Δ bcabca aa 5-> Aca S->AB saAb A-saAb E B->Cl -> 9

anbhct p>0 p>1 M > 0いょく 5- AbcC s Abcć A - , all Lab (E AL CC C-> cC JelE AL CC $S \longrightarrow X Y$ X ma a b X sa Xblab Ab Y --> cr | Y -> cy | c



aataa=aaaa a a =a ataa zaaa ata taan a + = ataaa-aaa

 $\Sigma = \{\alpha, +, = \}$

-Formal complexity of Natural Languages

Are NL context-sensitive?

References I

Bar-Hillel, Yehoshua, Perles, Micha, & Shamir, Eliahu. 1961. On formal properties of simple phrase structure grammars. STUF-Language Typology and Universals, 14(1-4), 143–172.

Chomsky, Noam. 1957. Syntactic Structures. Den Haag: Mouton & Co.

Chomsky, Noam. 1995. The Minimalist Program. Vol. 28. Cambridge, Mass.: MIT Press.

- Gazdar, Gerald, & Pullum, Geoffrey K. 1985 (May). Computationally Relevant Properties of Natural Languages and Their Grammars. Tech. rept. Center for the Study of Language and Information, Leland Stanford Junior University.
- Gibson, Edward, & Thomas, James. 1997. The Complexity of Nested Structures in English: Evidence for the Syntactic Prediction Locality Theory of Linguistic Complexity. Unpublished manuscript, Massachusetts Institute of Technology.
- Joshi, Aravind K. 1985. Tree Adjoining Grammars: How Much Context-Sensitivity is Required to Provide Reasonable Structural Descriptions? Tech. rept. Department of Computer and Information Science, University of Pennsylvania.
- Langendoen, D Terence, & Postal, Paul Martin. 1984. *The vastness of natural languages*. Basil Blackwell Oxford.
- Mannell, Robert. 1999. Infinite number of sentences. part of a set of class notes on the Internet. http://clas.mq.edu.au/speech/infinite_sentences/.
- Schieber, Stuart M. 1985. Evidence against the Context-Freeness of Natural Language. Linguistics and Philosophy, 8(3), 333–343.
- Stabler, Edward P. 2011. Computational perspectives on minimalism. Oxford handbook of linguistic minimalism, 617–643.
- Steedman, Mark, et al. 2012 (June). Combinatory Categorial Grammars for Robust Natural Language Processing. Slides for NASSLLI course http://homepages.inf.ed.ac.uk/steedman/papers/ccg/nasslli12.pdf.

Vijay-Shanker, K., & Weir, David J. 1994. The Equivalence of Four Extensions of Context–Free

Grammars. Mathematical Systems Theory, 27, 511-546.