# Homework Assignment On Propositional Logic 

Due on November 5, 2019

I leave space between questions to allow you to state your answers consisely.

## Exercise 1

For each statement below, say whether it is true or not. You don't need to justify your answer when you say 'true'. When you say 'false', describe a valuation that falsifies the statement.
(1) $\quad p \rightarrow(q \rightarrow(r \rightarrow \neg p)), p \wedge q \vDash \neg r$
(2) $\quad p \rightarrow(q \rightarrow(r \rightarrow \neg q)) \vDash \neg r$
(3) $(p \wedge q) \vee r, p \vDash q$
(4) $\quad p \vee(q \wedge \neg r) \vDash r \rightarrow p$
(5) $\quad p \rightarrow \neg p \vDash \neg p$
(6) $\quad \neg p \rightarrow p \vDash \neg p$
(7) $\quad \vDash(\neg p \rightarrow p) \rightarrow(\neg p \vee q)$
(8) $\quad \vDash(\neg p \rightarrow p) \rightarrow(p \vee q)$

## Exercise 2

For each of the two formulae below, write a formula that is equivalent to it and whose only connectives are $\neg$ and $\vee$.
(1) $\quad(\neg a \wedge(b \rightarrow c)) \rightarrow \neg(\neg b \vee c)$
(2) $\quad(a \vee \neg(b \wedge c)) \wedge \neg(d \rightarrow(\neg a \wedge e))$

## Exercise 3

For each statement below, say whether it is true or false. You don't need to justify your answer when you say 'true'. When you say 'false', give a counterexample (pick two sentences $\phi$ and $\psi$ which falsify the claim).

Remember that a statement of the form $A$ if an only if $B$ means that $A$ cannot be true if $B$ isn't, but also that $B$ cannot be true if $A$ isn't. For instance the arithmetic statement $A$ number is divisible by 4 if and only if it is divisible by 2 is false, because some numbers are divisible by 2 without being divisible by 4 .
(1) A formula of the form $(\phi \vee \psi)$ is satisfiable if and only if $\phi$ is satisfiable or $\psi$ is satisfiable.
(2) A formula of the form $(\phi \vee \psi)$ is satisfiable if and only if $\phi$ is satisfiable and $\psi$ is satisfiable.
(3) A formula of the form $(\phi \vee \psi)$ is contradictory if and only if $\phi$ is contradictory or $\psi$ is contradictory.
(4) A formula of the form $(\phi \vee \psi)$ is contradictory if and only if both $\phi$ and $\psi$ are contradictory.
(5) A formula of the form $(\phi \wedge \psi)$ is satisfiable if and only if both $\phi$ and $\psi$ are satisfiable.
(6) A formula of the form $(\phi \wedge \psi)$ is contradictory if and only if $\phi$ is contradictory or $\psi$ is contradictory.
(7) A formula of the form $(\phi \wedge \psi)$ is contradictory if and only if both $\phi$ and $\psi$ are contradictory.
(8) A formula of the form $(\phi \wedge \psi)$ is a tautology if and only if $\phi$ is a tautology or $\psi$ is a tautology.
(9) A formula of the form $(\phi \wedge \psi)$ is a tautology if and only if both $\phi$ and $\psi$ are tautologies.

## Exercise 4

For each set of formulae below, describe all the valuations that satisfy it (no need to justify your answer).
(1) $\quad\left\{p_{1}, p_{2} \rightarrow p_{1}, p_{3} \rightarrow\left(p_{2} \rightarrow p_{1}\right)\right\}$
(2) $\quad\left\{\neg p_{1}, \neg\left(p_{2} \rightarrow p_{1}\right), \neg\left(p_{3} \rightarrow\left(p_{2} \rightarrow p_{1}\right)\right)\right\}$
(3) The following infinite set:
$\left\{\neg p_{1}, \neg\left(p_{2} \rightarrow p_{1}\right), \neg\left(p_{3} \rightarrow\left(p_{2} \rightarrow p_{1}\right)\right), \neg\left(p_{4} \rightarrow\left(p_{3} \rightarrow\left(p_{2} \rightarrow p_{1}\right)\right)\right), \ldots\right.$,
$\left.\neg\left(p_{i} \rightarrow\left(p_{i-i} \rightarrow\left(\ldots \rightarrow\left(p_{2} \rightarrow p_{1}\right)\right)\right) \ldots\right), \ldots\right\}$

## Exercise 5-Harder and optional

For this exercise, you will need to use a separate sheet.
We consider a propositional language based on only three atomic sentences $p_{1}, p_{2}$ and $p_{3}$, and
which has two unary connectives $\neg$ (with its standard semantics) and $O$ (whose semantics is described below), and the standard binary connectives (with their standard semantics) as well as a connective for exclusive disjunction, noted $\underline{\vee}$.

To each valuation $v$ we associate the set of atoms that $v$ maps to true, noted $\operatorname{pos}(v)$. For instance, if $v$ assigns 1 to $p_{1}$ and $p_{3}$ and 0 to $p_{2}$, then $\operatorname{pos}(v)=\left\{p_{1}, p_{3}\right\}$.

We now define an ordering relation on valuations by:
$u \leq v$ if $\operatorname{pos}(u) \subseteq \operatorname{pos}(v)$
In words: $u$ is 'smaller' than $v$ if $v$ makes true all the atoms that $u$ makes true, and possibly more.

The syntax and semantics of $O$ are given by:
(1) a. If $\phi$ is a formula, then $O \phi$ is a formula.
b. For any sentence $\phi$ and any valuation $v, v(O \phi)=1$ if:
(i) $v(\phi)=1$ and
(ii) there is no valuation $u$ such that $u(\phi)=1$ and $u<v$. (where $u<v$ means $u \leq v$ and $u \neq v$ )
(2) In words: $O \phi$ is true relative to valuation $v$ if $v$ makes $\phi$ true, and there is no smaller valuation $u$ that also makes $\phi$ true.

1. Find a formula equivalent to $O p_{2}$ in which $O$ does not occur.
2. Find a formula equivalent to $O\left(p_{1} \vee p_{2}\right)$ in which $O$ does not occur.
3. Describe the set of valuations that make $O\left(p_{1} \vee\left(p_{2} \vee p_{3}\right)\right)$ true.
4. Is any of the following formulae equivalent to $O\left(p_{1} \vee\left(p_{2} \vee p_{3}\right)\right)$ ?
(a) $p_{1} \underline{\vee}\left(p_{2} \underline{\vee} p_{3}\right)$
(b) $p_{1} \underline{\vee}\left(p_{2} \vee p_{3}\right)$
(c) $p_{1} \vee\left(p_{2} \vee p_{3}\right)$
(d) $p_{1} \vee\left(p_{2} \vee p_{3}\right)$
5. Describe all the valuations that make $O\left(p_{1} \vee\left(p_{2} \wedge p_{3}\right)\right)$ true.
6. Is $O\left(p_{1} \vee\left(p_{2} \wedge p_{3}\right)\right)$ equivalent to $\left(p_{1} \vee\left(p_{2} \wedge p_{3}\right)\right)$ ?
7. Is it possible to characterize the meaning of $O$ by means of a truth-table?
