Formal Languages applied to Linguistics

Pascal Amsili

Laboratoire Lattice, Université Sorbonne Nouvelle
Cogmaster, september 2019

General introduction

(1) Mathematicians (incl. Chomsky) have formalized the notion of language

It might be thought of as an oversimplification, but that's always the same story...
(2) What does it buy us:
(1) Tools to think about theoretical issues about language(s) (expressiveness, complexity, comparability...)
(2) Tools to manipulate concretely language (e.g. with computers)
(3) A research programme:

- Represent the syntax of natural language in a fully unambiguously specified way

Now let's get familiar with the mathematical notion of language

Formal Languages

Base notions

Definition
Problem

Overview

(1) Formal Languages

- Base notions
- Definition
- Problem
(2) Formal Grammars
(3) Regular Languages

4 Formal complexity of Natural Languages

Base notions

Alphabet, word

Def. 1 (Alphabet)

An alphabet Σ is a finite set of symbols (letters). The size of the alphabet is the cardinal of the set.

Def. 2 (Word)
A word on the alphabet Σ is a finite sequence of letters from Σ. Formally, let $[p]=(1,2,3,4, \ldots, p)$ (ordered integer sequence). Then a word is a mapping

$$
u:[p] \longrightarrow \Sigma
$$

p, the length of u, is noted $|u|$.

Formal Languages

Base notions

Definition
Problem

Examples I

Alphabet $\quad\{0,1,2,3,4,5,6,7,8,9, \cdot\}$
Words $235 \cdot 29$
$007 \cdot 12$
.1.1.00..
3. $1415962 \ldots(\pi)$

Alphabet $\{,,-$ \}
Words
-.ー.
...

Base notions

Definition
Problem

Examples II

Alphabet \｛．＿，．．．．，＿•－• ，＿．．，．，．．．\}
Words
$\bullet \bullet$－－\bullet
ー・••－••・ー・ ーーー ー
－ー＿••＿‥••・ー＿•••＿•••

Alphabet $\{\mathrm{a}$ ，woman，loves，man \} Words
a
a woman loves a woman man man a loves woman loves a

Base notions

Definition
Problem

Monoid

Def. $3\left(\Sigma^{*}\right)$
Let Σ be an alphabet.
The set of all the words that can be formed with any number of letters from Σ is noted Σ^{*}

It comprises a word with no letter, noted ε
Example: $\quad \Sigma=\{a, b, c\}$

$$
\Sigma^{*}=\{\varepsilon, a, b, c, a a, a b, a c, b a, \ldots, b b b, \ldots\}
$$

N.B.: Σ^{*} is always infinite, except...

Base notions

Definition
Problem

Monoid

Def. $3\left(\Sigma^{*}\right)$

Let Σ be an alphabet.
The set of all the words that can be formed with any number of letters from Σ is noted Σ^{*}

It comprises a word with no letter, noted ε
Example: $\quad \Sigma=\{a, b, c\}$

$$
\Sigma^{*}=\{\varepsilon, a, b, c, a a, a b, a c, b a, \ldots, b b b, \ldots\}
$$

N.B.: Σ^{*} is always infinite, except...

$$
\text { if } \Sigma=\emptyset \text {. Then } \Sigma^{*}=\{\varepsilon\} .
$$

Base notions

Definition
Problem

Structure of \sum^{*}

Let k be the size of the alphabet $k=|\Sigma|$.

Then Σ^{*} contains: $k^{0}=1 \quad$ word(s) of 0 letters (ε) $k^{1}=k \quad \operatorname{word}(\mathrm{~s})$ of 1 letters
$k^{2} \quad \operatorname{word}(\mathrm{~s})$ of 2 letters
$k^{n} \quad$ words of n letters, $\forall n \geq 0$

Formal Languages
Formal Grammars
Regular Languages

Base notions

Definition
Problem

Representation of \sum^{*}

$\Sigma=\{a, b, c\}$

- Words can be enumerated according to different orders
- Σ^{*} is a countable set

Concatenation

Σ^{*} can be equipped with a binary operation: the concatenation

Def. 4 (Concatenation)

Let $[p] \xrightarrow{u} X,[q] \xrightarrow{w} X$. The concatenation of u and w, noted uw (u.w) is thus defined:

$$
\begin{array}{lll}
u w: & {[p+q] \longrightarrow X} & \\
& u w_{i}=\left\{\begin{array}{lll}
u_{i} & \text { for } & i \in[1, p] \\
w_{i-p} & \text { for } & i \in[p+1, p+q]
\end{array}\right.
\end{array}
$$

Concatenation

Σ^{*} can be equipped with a binary operation: the concatenation

Def. 4 (Concatenation)

Let $[p] \xrightarrow{u} X,[q] \xrightarrow{w} X$. The concatenation of u and w, noted uw (u.w) is thus defined:

$$
\begin{array}{lll}
u w: & {[p+q] \longrightarrow X} & \\
& u w_{i}=\left\{\begin{array}{lll}
u_{i} & \text { for } & i \in[1, p] \\
w_{i-p} & \text { for } & i \in[p+1, p+q]
\end{array}\right.
\end{array}
$$

Example: u bacba
v cca

Concatenation

Σ^{*} can be equipped with a binary operation: the concatenation

Def. 4 (Concatenation)

Let $[p] \xrightarrow{u} X,[q] \xrightarrow{w} X$. The concatenation of u and w, noted uw (u.w) is thus defined:

$$
\begin{array}{lll}
u w: & {[p+q] \longrightarrow X} & \\
& u w_{i}=\left\{\begin{array}{lll}
u_{i} & \text { for } & i \in[1, p] \\
w_{i-p} & \text { for } & i \in[p+1, p+q]
\end{array}\right.
\end{array}
$$

Example: u bacba
v cca
uv bacbacca

Base notions

Definition
Problem

Factor

> Def. 5 (Factor) $\begin{array}{ll}\text { A factor } w \text { of } u \text { is a subset of adjascent letters in } u . \\ -w \text { is a factor of } u & \Leftrightarrow \exists u_{1}, u_{2} \text { s.t. } u=u_{1} w u_{2} \\ -w \text { is a left factor (prefix) of } u & \Leftrightarrow \exists u_{2} \text { s.t. } u=w u_{2} \\ -w \text { is a right factor (suffix) of } u & \Leftrightarrow \exists u_{1} \text { s.t. } u=u_{1} w\end{array}$

Def. 6 (Factorization)

We call factorization the decomposition of a word in factors.

Formal Languages

Base notions
 Definition
 Problem

Role of concatenation

(1) Words have been defined on Σ.

If one takes two such words, it's always possible to form a new word by concatenating them.
(2) Any word can be factorised in many different ways: $a b a c c a b$

Formal Languages

Role of concatenation

(1) Words have been defined on Σ.

If one takes two such words, it's always possible to form a new word by concatenating them.
(2) Any word can be factorised in many different ways: $a b a c c a b$ $(a b a)(\subset a b)$

Formal Languages

Base notions Definition

Role of concatenation

(1) Words have been defined on Σ.

If one takes two such words, it's always possible to form a new word by concatenating them.
(2) Any word can be factorised in many different ways: $a b a c c a b$ $\left.(a b)(\operatorname{a} c c))^{a} b\right)$

Formal Languages

Base notions Definition

Role of concatenation

(1) Words have been defined on Σ.

If one takes two such words, it's always possible to form a new word by concatenating them.
(2) Any word can be factorised in many different ways: $a b a c c a b$ $\left.(a b a c c))^{6}\right)$

Formal Languages

Base notions
 Definition
 Problem

Role of concatenation

(1) Words have been defined on Σ.

If one takes two such words, it's always possible to form a new word by concatenating them.
(2) Any word can be factorised in many different ways: $a b a c c a b$ $(a)(b)(E)(E)(a)(b)$

Role of concatenation

(1) Words have been defined on Σ.

If one takes two such words, it's always possible to form a new word by concatenating them.
(2) Any word can be factorised in many different ways: $a b a c c a b$
$(a)(b)(E)(E)(a)(b)$
(3) Since all letters of Σ form a word of length 1 (this set of words is called the base),
(9) any word of Σ^{*} can be seen as a (unique) sequence of concatenations of length 1 words :
$a b a c c a b$ ((((((ab)a)c)c)a)b) (((((a.b).a).c).c).a).b)

Base notions
 Definition
 Problem

Properties of concatenation

(1) Concatenation is non commutative
(2) Concatenation is associative
(3) Concatenation has an identity (neutral) element: ε
(1) $u v . w \neq w \cdot u v$
(2) $(u . v) . w=u .(v . w)$
(3) $u . \varepsilon=\varepsilon . u=u$

Notation: a.a.a $=a^{3}$

Formal Languages
Formal Grammars Regular Languages Formal complexity of Natural Languages References

Overview

(1) Formal Languages

- Base notions
- Definition
- Problem
(2) Formal Grammars
(3) Regular Languages
(4) Formal complexity of Natural Languages

Formal Languages
Formal Grammars Regular Languages Formal complexity of Natural Languages References

Definition

Problem

Language

Def. 7 ((Formal) Language)

Let Σ be an alphabet.
A language on Σ is a set of words on Σ.

Formal Languages
Formal Grammars Regular Languages Formal complexity of Natural Languages References

Definition

Problem

Language

Def. 7 ((Formal) Language)

Let Σ be an alphabet.
A language on Σ is a set of words on Σ.
or, equivalently,
A language on Σ is a subset of Σ^{*}

Formal Languages
Formal Grammars Regular Languages Formal complexity of Natural Languages References

Base notions

Definition

Problem

Let $\Sigma=\{a, b, c\}$.

Formal Languages
Formal Grammars Regular Languages Formal complexity of Natural Languages References

Base notions

Definition

Problem

Examples I

Let $\Sigma=\{a, b, c\}$.

$$
L_{1}=\{a a, a b, b a c\}
$$

finite language

Formal Languages
Formal Grammars Regular Languages Formal complexity of Natural Languages References

Base notions

Definition

Problem

Examples I

$$
\text { Let } \Sigma=\{a, b, c\} .
$$

$$
\begin{array}{ll}
L_{1}=\{a a, a b, b a c\} & \text { finite language } \\
\hline L_{2}=\{a, a a, a a a, \text { aaaa } \ldots\} &
\end{array}
$$

Formal Languages
Formal Grammars Regular Languages Formal complexity of Natural Languages References

Definition

Problem

Examples I

$$
\text { Let } \Sigma=\{a, b, c\} \text {. }
$$

$$
\begin{array}{rlr}
L_{1}= & \{a a, a b, b a c\} & \text { finite language } \\
\hline L_{2}= & \{a, a a, a a a, a a a a \ldots\} & \\
& \text { or } L_{2}=\left\{a^{i} / i \geq 1\right\} & \text { infinite language } \\
\hline
\end{array}
$$

Definition

Problem

Examples I

$$
\text { Let } \Sigma=\{a, b, c\} \text {. }
$$

$$
\begin{array}{ll}
L_{1}=\{a a, a b, b a c\} & \text { finite language } \\
\hline L_{2}=\{a, a a, a a a, a a a \ldots\} & \\
\text { or } L_{2}=\left\{a^{i} / i \geq 1\right\} & \text { infinite language } \\
\hline L_{3}=\{\varepsilon\} & \text { finite language, } \\
& \text { reduced to a singleton }
\end{array}
$$

Definition

Problem

Examples I

$$
\text { Let } \Sigma=\{a, b, c\} \text {. }
$$

$$
\begin{array}{ll}
L_{1}=\{a a, a b, b a c\} & \text { finite language } \\
\hline L_{2}=\{a, a a, a a a, a a a a \ldots\} & \\
\text { or } L_{2}=\left\{a^{i} / i \geq 1\right\} & \text { infinite language } \\
\hline L_{3}=\{\varepsilon\} & \text { finite language } \\
& \text { reduced to a singleton } \\
\hline & \neq
\end{array}
$$

Definition

Examples I

$$
\text { Let } \Sigma=\{a, b, c\} \text {. }
$$

$L_{1}=\{a a, a b, b a c\}$	finite language
$L_{2}=\{a, a a, a a a, a a a a \ldots\}$	
or $L_{2}=\left\{a^{i} / i \geq 1\right\}$	infinite language
$L_{3}=\{\varepsilon\}$	finite language,
$L_{4}=\emptyset$	reduced to a singleton

Definition

Problem

Examples I

$$
\text { Let } \Sigma=\{a, b, c\} .
$$

\(\left.\begin{array}{ll}L_{1}=\{a a, a b, b a c\} \& finite language

\hline L_{2}=\{a, a a, a a a, a a a a ···\}

or L_{2}=\left\{a^{i} / i \geq 1\right\}\end{array}\right)\) infinite language	finite language,
reduced to a singleton	

Formal Languages
Formal Grammars Regular Languages Formal complexity of Natural Languages References

Base notions

Definition

Problem

Examples II

Let $\Sigma=\{$ a, man, loves, woman $\}$.

Formal Languages
Formal Grammars Regular Languages Formal complexity of Natural Languages References

Base notions

Definition

Problem

Examples II

Let $\Sigma=\{$ a, man, loves, woman $\}$.
$L=\{$ a man loves a woman, a woman loves a man $\}$

Formal Languages

Examples II

$$
\begin{aligned}
& \text { Let } \Sigma=\{\text { a, man, loves, woman }\} \\
& L=\{\text { a man loves a woman, a woman loves a man }\} \\
& \text { Let } \Sigma^{\prime}=\{\text { a, man, who, saw, fell }\}
\end{aligned}
$$

Examples II

Let $\Sigma=\{$ a, man, loves, woman $\}$.
$L=\{$ a man loves a woman, a woman loves a man $\}$

Let $\Sigma^{\prime}=\{\mathrm{a}$, man, who, saw, fell $\}$.
$L^{\prime}=\left\{\begin{array}{l}\text { a man fell, } \\ \text { a man who saw a man fell, } \\ \text { a man who saw a man who saw a man fell, } \\ \ldots\end{array}\right\}$

Formal Languages
Formal Grammars Regular Languages Formal complexity of Natural Languages References

Set operations

Since a language is a set, usual set operations can be defined:

- union
- intersection
- set difference

Set operations

Since a language is a set, usual set operations can be defined:

- union
- intersection
- set difference
\Rightarrow One may describe a (complex) language as the result of set operations on (simpler) languages:
$\left\{a^{2 k} / k \geqslant 1\right\}=\{a$, aa, aaa, aaaa,$\ldots\} \cap\left\{w w / w \in \Sigma^{*}\right\}$

Additional operations

Def. 8 (product operation on languages)
One can define the language product and its closure the Kleene star operation:

- The product of languages is thus defined:

$$
L_{1} \cdot L_{2}=\left\{u v / u \in L_{1} \& v \in L_{2}\right\}
$$

k times
Notation: $\overbrace{L . L . L \ldots L}=L^{k} ; L^{0}=\{\varepsilon\}$

- The Kleene star of a language is thus defined:

$$
L^{*}=\bigcup_{n \geqslant 0} L^{n}
$$

Regular expressions

It is common to use the 3 rational operations:

- union
- product
- Kleene star
to characterize certain languages...

Regular expressions

It is common to use the 3 rational operations:

- union
- product
- Kleene star
to characterize certain languages...

$$
(\{a\} \cup\{b\})^{*} \cdot\{c\}=\{c, a c, a b c, b c, \ldots, \text { baabaac }, \ldots\}
$$

(simplified notation $(a \mid b)^{*} c$ - regular expressions)

Regular expressions

It is common to use the 3 rational operations:

- union
- product
- Kleene star
to characterize certain languages...

$$
\begin{aligned}
(\{a\} \cup\{b\})^{*} \cdot\{c\} & =\{c, a c, a b c, b c, \ldots, \text { baabaac, }, \ldots\} \\
& \text { (simplified notation }(a \mid b)^{*} c-\text { regular expressions) }
\end{aligned}
$$

... but not all languages can be thus characterized.

Formal Languages
Formal Grammars Regular Languages Formal complexity of Natural Languages References

Overview

(1) Formal Languages

- Base notions
- Definition
- Problem
(2) Formal Grammars
(3) Regular Languages

4 Formal complexity of Natural Languages

Formal Languages
Formal Grammars
Regular Languages

Back to "Natural" Languages

English as a formal language:
alphabet morphemes (often simplified to words -depending on your view on flexional morphology)
\Rightarrow Finite at a time t by hypothesis
words well formed English sentences
\Rightarrow English sentences are all finite by hypothesis
language English, as a set of an infinite number of well formed combinations of "letters" from the alphabet

Discussion I

(1) is the alphabet finite?
closed class morphemes obviously open class morphemes what about "new words'?

$$
\begin{aligned}
& \text { morphological derivations can be seen as } \\
& \text { produced from an unchanged } \\
& \text { inventory (1) } \\
& \text { other words - loan words (rare) } \\
& \text { - lexical inventions (rare) } \\
& \text { - change of category (2) (bounded) } \\
& \quad \Rightarrow \text { negligable }
\end{aligned}
$$

(1) motherese $=$ mother + ese
(2) american $_{A} \rightarrow$ american $_{N}$

Discussion II

(2) is English infinite?

- It is supposed that you can always profer a longuer sentence than the previous one by adding linguistic material preserving well-formedness.
- Compatible with the working memory limit (Langendoen \& Postal, 1984)
(3) is language discrete?

Well, that's another story

About infinity

Linguists sometimes have trouble with infinity: In order for there to be an infinite number of sentences in a language there must either be an infinite number of words in the language (clearly not true) or there must be the possibility of infinite length sentences. The product of two finite numbers is always a finite number. (Mannell, 1999) and many others

Formal Languages
Formal Grammars
Regular Languages Formal complexity of Natural Languages References

Base notions Definition

About infinity

Linguists sometimes have trouble with infinity:
In order for there to be an infinite number of sentences in a
language there must either be an infinite number of words
in the language (clearly not true) or there must be the possibility of infinite length sentences. The product of two finite numbers is always a finite number.
(Mannell, 1999) and many others

!! WRONG !!

Formal Languages
Formal Grammars
Regular Languages Formal complexity of Natural Languages References

Base notions Definition

About infinity

> Linguists sometimes have trouble with infinity:
> In order for there to be an infinite number of sentences in a
> language there must either be an infinite number of words
> in the language (clearly not true) or there must be the possibility of infinite length sentences. The product of two finite numbers
> is always a finite number.
> (Mannell, 1999) and many others

!! WRONG !!
The whole point of formal languages is that they are infinite sets of finite words on a finite alphabet.

Formal Languages
Formal Grammars
Regular Languages
Formal complexity of Natural Languages
References

Base notions Definition Problem

About infinity

Linguists sometimes have trouble with infinity:
In order for there to be an infinite number of sentences in a
language there must either be an infinite number of words
in the language (clearly not true) or there must be the possibility of infinite length sentences. The product of two finite numbers
is always a finite number.
(Mannell, 1999) and many others

!! WRONG !!

The whole point of formal languages is that they are infinite sets of finite words on a finite alphabet.
von Humbolt: language is an infinite use of finite means

Good questions

Why would one consider natural language as a formal language?

- it allows to describe the language in a formal/compact/elegant way
- it allows to compare various languages (via classes of languages established by mathematicians)
- it give algorithmic tools to recognize and to analyse words of a language.

$$
\begin{aligned}
& \text { recognize } u \text { : decide whether } u \in L \\
& \text { analyse } u \quad \text { : show the internal structure of } u
\end{aligned}
$$

Overview

(1) Formal Languages
(2) Formal Grammars

- Definition
- Language classes
(3) Regular Languages
(4) Formal complexity of Natural Languages

Formal Languages

Introduction

Formal grammars have been proposed by Chomsky as one of the available means to characterize a formal language.
Other means include :

- Turing machines (automata)
- λ-terms
- ...

Formal grammar

Def. 9 ((Formal) Grammar)
A formal grammar is defined by $\langle\Sigma, N, S, P\rangle$ where

- Σ is an alphabet
- N is a disjoint alphabet non-terminal vocabulary)
- $S \in V$ is a distinguished elemnt of N, called the axiom
- P is a set of « production rules », namely a subset of the cartesian product $(\Sigma \cup N)^{*} N(\Sigma \cup N)^{*} \times(\Sigma \cup N)^{*}$.

Formal Languages

Formal Grammars

Regular Languages Formal complexity of Natural Languages

References

Definition

Language classes

Examples

$\langle\Sigma, N, S, P\rangle$

$\mathcal{G}_{0}=\langle$

Formal Languages

Formal Grammars

Regular Languages Formal complexity of Natural Languages References

Definition

Language classes

Examples

$\langle\Sigma, N, S, P\rangle$

$\mathcal{G}_{0}=\langle\{$ joe, sam, sleeps $\}$,

Formal Languages

Formal Grammars

Regular Languages Formal complexity of Natural Languages References

Definition

Language classes

Examples

$$
\langle\Sigma, N, S, P\rangle
$$

$\mathcal{G}_{0}=\langle\{j$ joe, sam, sleeps $\},\{N, V, S\}$,

Definition

Language classes

Examples

$$
\langle\Sigma, N, S, P\rangle
$$

$\mathcal{G}_{0}=\langle\{j$ joe, sam, sleeps $\},\{N, V, S\}, S$,

Definition

Examples

$$
\begin{array}{r}
\langle\Sigma, N, S, P\rangle \\
\left.\mathcal{G}_{0}=\left\langle\{\text { joe , sam, sleeps }\},\{N, V, S\}, S,\left\{\begin{array}{l}
(N, \text { joe }) \\
(N, \text { sam }) \\
(V, \text { sleeps }) \\
(S, N V)
\end{array}\right\}\right\rangle\right\}
\end{array}
$$

Definition

Examples

$$
\begin{gathered}
\langle\Sigma, N, S, P\rangle \\
\left.\mathcal{G}_{0}=\left\langle\{\text { joe , sam, sleeps }\},\{N, V, S\}, S,\left\{\begin{array}{l}
N \rightarrow \text { joe } \\
N \rightarrow \text { sam } \\
V \rightarrow \text { sleeps } \\
S \rightarrow N V
\end{array}\right\}\right\rangle\right\}
\end{gathered}
$$

