Formal Languages applied to Linguistics

Pascal Amsili

Laboratoire Lattice, Université Sorbonne Nouvelle

Cogmaster, september 2019

Base notions Definition **Problem**

Good questions

Why would one consider natural language as a formal language?

- it allows to describe the language in a formal/compact/elegant way
- it allows to <u>compare</u> various languages (via classes of languages established by mathematicians)
- it give algorithmic tools to recognize and to analyse words of a language.

recognize u: decide whether $u \in L$ analyse u: show the internal structure of u

Definition

Language classes

Overview

Formal Grammars
 Definition
 Language classes

3 Regular Languages

4 Formal complexity of Natural Languages

Definition Language classes

Introduction

Formal grammars have been proposed by Chomsky as **one of the available means** to characterize a formal language. Other means include :

- Turing machines (automata)
- λ -terms
- . . .

Definition Language classes

Formal grammar

Def. 9 ((Formal) Grammar)

A formal grammar is defined by $\langle \Sigma, N, S, P \rangle$ where

- Σ is an alphabet
- N is a disjoint alphabet non-terminal vocabulary)
- $S \in V$ is a distinguished elemnt of N, called the *axiom*
- P is a set of « production rules », namely a subset of the cartesian product (Σ ∪ N)*N(Σ ∪ N)* × (Σ ∪ N)*.

Examples

Definition Language classes

 $\langle \Sigma, N, S, P \rangle$

30/112

Definition Language classes

$\langle \Sigma, N, S, P \rangle$

$$\mathcal{G}_0 = \left\langle \{\textit{joe}, \textit{sam}, \textit{sleeps}\}, \right.$$

30/112

Definition Language classes

$$\langle \Sigma, N, S, P \rangle$$

$$\mathcal{G}_0 = \left\langle \{ \textit{joe}, \textit{sam}, \textit{sleeps} \}, \{ \textit{N}, \textit{V}, \textit{S} \}, \right.$$

Definition Language classes

$$\langle \Sigma, N, S, P \rangle$$

$$\mathcal{G}_0 = \left\langle \{ \textit{joe}, \textit{sam}, \textit{sleeps} \}, \{ \textit{N}, \textit{V}, \textit{S} \}, \textit{S}, \right.$$

Definition Language classes

$$\langle \Sigma, N, S, P \rangle$$

$$\mathcal{G}_{0} = \left\langle \{joe, sam, sleeps\}, \{N, V, S\}, S, \left\{ \begin{array}{c} (N, joe) \\ (N, sam) \\ (V, sleeps) \\ (S, N V) \end{array} \right\} \right\rangle \}$$

30/112

Definition Language classes

Examples

$$\langle \Sigma, N, S, P \rangle$$

$$\mathcal{G}_{0} = \left\langle \{ joe, sam, sleeps \}, \{N, V, S\}, S, \left\{ \begin{array}{c} N \to joe \\ N \to sam \\ V \to sleeps \\ S \to N V \end{array} \right\} \right\rangle \}$$

Definition Language classes

Examples (cont'd)

$$\mathcal{G}_{1} = \left\langle \{jean, dort\}, \{Np, SN, SV, V, S\}, S, \left\{ \begin{array}{l} S \to SN \ SV \\ SN \to Np \\ SV \to V \\ Np \to jean \\ V \to dort \end{array} \right\} \right\rangle \right\}$$

$$\mathcal{G}_{2} = \left\langle \{(,)\}, \{S\}, S, \{S \longrightarrow \varepsilon \mid (S)S\} \right\rangle$$

Definition Language classes

Notation

$$\begin{array}{rcccccc} \mathcal{G}_{3}: & E & \longrightarrow & E+E \\ & & \mid & E \times E \\ & & \mid & (E) \\ & & \mid & F \\ F & \longrightarrow & 0|1|2|3|4|5|6|7|8|9 \end{array}$$

32 / 112

Definition Language classes

Notation

$$\begin{array}{rcl} \mathcal{G}_{3}: & E & \longrightarrow & E+E \\ & & \mid & E \times E \\ & & \mid & (E) \\ & & \mid & F \\ F & \longrightarrow & 0 |1|2|3|4|5|6|7|8|9 \\ \mathcal{G}_{3} = \langle \{+, \times, (,), 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, \{E, F\}, E, \{\ldots\} \rangle \end{array}$$

32 / 112

32 / 112

 $G_4 = E \rightarrow E + T \mid T, T \rightarrow T \times F \mid F, F \rightarrow (E) \mid a$

$$F \longrightarrow 0|1|2|3|4|5|6|7|8|9$$

$$\mathcal{G}_{3} = \langle \{+, \times, (,), 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, \{E, F\}, E, \{\ldots\} \rangle$$

Formal Languages Formal Grammars **Regular Languages** Formal complexity of Natural Languages References

Notation

Definition Language classes

Definition Language classes

Immediate Derivation

Def. 10 (Immediate derivation)

Let $\mathcal{G} = \langle X, V, S, P \rangle$ a grammar, $(f, g) \in (X \cup V)^*$ two "words", $r \in P$ a production rule, such that $r : A \longrightarrow u$ $(u \in (X \cup V)^*)$.

- f derives into g (immediate derivation) with the rule r(noted $f \xrightarrow{r} g$) iff $\exists v, w \text{ s.t. } f = vAw$ and g = vuw
- f derives into g (immediate derivation) in the grammar \mathcal{G} (noted $f \xrightarrow{\mathcal{G}} g$) iff $\exists r \in P \text{ s.t. } f \xrightarrow{r} g$.

Definition Language classes

Derivation

Def. 11 (Derivation)

$$\begin{array}{ccc} f \xrightarrow{\mathcal{G}*} g \text{ if } & f = g & \text{or} \\ \exists f_0, f_1, f_2, ..., f_n \text{ s.t. } f_0 = f & \\ & f_n = g & \\ & \forall i \in [1, n] : f_{i-1} \xrightarrow{\mathcal{G}} f_i \end{array}$$

An example with G_0 : N V joe N

Definition Language classes

Derivation

Def. 11 (Derivation)

$$\begin{array}{ccc} f \xrightarrow{\mathcal{G}*} g \text{ if } & f = g & \text{or} \\ \exists f_0, f_1, f_2, ..., f_n \text{ s.t. } f_0 = f & \\ & f_n = g & \\ & \forall i \in [1, n] : f_{i-1} \xrightarrow{\mathcal{G}} f_i \end{array}$$

An example with \mathcal{G}_0 : $N \ V \ joe \ N \longrightarrow sam \ V \ joe \ N$

Definition Language classes

Derivation

Def. 11 (Derivation)

$$\begin{array}{ccc} f \xrightarrow{\mathcal{G}*} g \text{ if } & f = g & \text{or} \\ \exists f_0, f_1, f_2, ..., f_n \text{ s.t. } f_0 = f & \\ & f_n = g & \\ & \forall i \in [1, n] : f_{i-1} \xrightarrow{\mathcal{G}} f_i \end{array}$$

An example with \mathcal{G}_0 : $N \ V \ joe \ N \longrightarrow sam \ V \ joe \ joe \qquad or$

Definition Language classes

Derivation

Def. 11 (Derivation)

$$\begin{array}{ccc} f \xrightarrow{\mathcal{G}*} g \text{ if } & f = g & \text{or} \\ & \exists f_0, f_1, f_2, ..., f_n \text{ s.t. } f_0 = f & \\ & f_n = g & \\ & \forall i \in [1, n] : f_{i-1} \xrightarrow{\mathcal{G}} f_i & \end{array}$$

 $\begin{array}{ccc} \text{An example with } \mathcal{G}_0 & & \\ N \ V \ \textit{joe} \ N \ \longrightarrow \ \textit{sam} \ V \ \textit{joe} \ \textit{joe} \ or & \\ & & sam \ V \ \textit{joe} \ \textit{sam} & \\ & & \text{or} & \\ & & & \text{or} & \\ \end{array}$

Definition Language classes

Derivation

Def. 11 (Derivation)

$$\begin{array}{ccc} f \xrightarrow{\mathcal{G}*} g \text{ if } & f = g & \text{or} \\ & \exists f_0, f_1, f_2, ..., f_n \text{ s.t. } f_0 = f & \\ & f_n = g & \\ & \forall i \in [1, n] : f_{i-1} \xrightarrow{\mathcal{G}} f_i & \end{array}$$

An example with \mathcal{G}_0 : $N \ V \ joe \ N \longrightarrow sam \ V \ joe \ N \longrightarrow sam \ V \ joe \ joe \ or$ $sam \ V \ joe \ sam \ or$ $sam \ sleeps \ joe \ N \ or$

. . .

Definition Language classes

Endpoint of a derivation

$$\begin{array}{rcccccc} \mathcal{G}_{3}: & E & \longrightarrow & E+E \\ & & \mid & E \times E \\ & & \mid & (E) \\ & & \mid & F \\ F & \longrightarrow & 0|1|2|3|4|5|6|7|8|9 \end{array}$$

An example with \mathcal{G}_3 :

 $E \times E$

Definition Language classes

Endpoint of a derivation

$$\begin{array}{rccccccc} \mathcal{G}_{3}: & E & \longrightarrow & E+E \\ & & \mid & E \times E \\ & & \mid & (E) \\ & & \mid & F \\ F & \longrightarrow & 0|1|2|3|4|5|6|7|8|9 \end{array}$$

An example with \mathcal{G}_3 :

 $E \times E \longrightarrow F \times E$

Definition Language classes

Endpoint of a derivation

$$\begin{array}{rcccccc} \mathcal{G}_{3}: & E & \longrightarrow & E+E \\ & & \mid & E \times E \\ & & \mid & (E) \\ & & \mid & F \\ F & \longrightarrow & 0|1|2|3|4|5|6|7|8|9 \end{array}$$

An example with \mathcal{G}_3 :

 $E \times E \longrightarrow F \times E \longrightarrow 3 \times E$

Definition Language classes

Endpoint of a derivation

$$\begin{array}{rccccccc} \mathcal{G}_{3}: & E & \longrightarrow & E+E \\ & & \mid & E \times E \\ & & \mid & (E) \\ & & \mid & F \\ F & \longrightarrow & 0|1|2|3|4|5|6|7|8|9 \end{array}$$

An example with \mathcal{G}_3 :

 $E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times (E)$

Definition Language classes

Endpoint of a derivation

$$\begin{array}{rcccccccc} \mathcal{G}_{3}: & E & \longrightarrow & E+E \\ & & \mid & E \times E \\ & & \mid & (E) \\ & & \mid & F \\ F & \longrightarrow & 0|1|2|3|4|5|6|7|8|9 \end{array}$$

An example with \mathcal{G}_3 :

 $E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times (E) \longrightarrow 3 \times (E+E)$

Definition Language classes

Endpoint of a derivation

$$\begin{array}{rccccccc} \mathcal{G}_{3}: & E & \longrightarrow & E+E \\ & & \mid & E \times E \\ & & \mid & (E) \\ & & \mid & F \\ F & \longrightarrow & 0|1|2|3|4|5|6|7|8|9 \end{array}$$

An example with \mathcal{G}_3 :

 $\begin{array}{c} E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times (E) \longrightarrow 3 \times (E+E) \longrightarrow \\ 3 \times (E+F) \end{array}$

Definition Language classes

Endpoint of a derivation

$$\begin{array}{rcccccccc} \mathcal{G}_{3}: & E & \longrightarrow & E+E \\ & & \mid & E \times E \\ & & \mid & (E) \\ & & \mid & F \\ F & \longrightarrow & 0|1|2|3|4|5|6|7|8|9 \end{array}$$

An example with \mathcal{G}_3 :

$$\begin{array}{c} E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times (E) \longrightarrow 3 \times (E+E) \longrightarrow \\ 3 \times (E+F) \longrightarrow 3 \times (E+4) \end{array}$$

Definition Language classes

Endpoint of a derivation

$$\begin{array}{rcccccccc} \mathcal{G}_{3}: & E & \longrightarrow & E+E \\ & & \mid & E \times E \\ & & \mid & (E) \\ & & \mid & F \\ F & \longrightarrow & 0|1|2|3|4|5|6|7|8|9 \end{array}$$

An example with \mathcal{G}_3 :

$$\begin{array}{c} E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times (E) \longrightarrow 3 \times (E+E) \longrightarrow \\ 3 \times (E+F) \longrightarrow 3 \times (E+4) \longrightarrow 3 \times (F+4) \end{array}$$

Definition Language classes

Endpoint of a derivation

$$\begin{array}{rcccccccc} \mathcal{G}_{3}: & E & \longrightarrow & E+E \\ & & \mid & E \times E \\ & & \mid & (E) \\ & & \mid & F \\ F & \longrightarrow & 0|1|2|3|4|5|6|7|8|9 \end{array}$$

An example with \mathcal{G}_3 :

 $\begin{array}{c} E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times (E) \longrightarrow 3 \times (E+E) \longrightarrow \\ 3 \times (E+F) \longrightarrow 3 \times (E+4) \longrightarrow 3 \times (F+4) \longrightarrow 3 \times (5+4) \end{array}$

Definition Language classes

Endpoint of a derivation

$$\begin{array}{rcccccccc} \mathcal{G}_{3}: & E & \longrightarrow & E+E \\ & & \mid & E \times E \\ & & \mid & (E) \\ & & \mid & F \\ F & \longrightarrow & 0|1|2|3|4|5|6|7|8|9 \end{array}$$

An example with \mathcal{G}_3 :

 $E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times (E) \longrightarrow 3 \times (E+E) \longrightarrow 3 \times (E+F) \longrightarrow 3 \times (E+4) \longrightarrow 3 \times (F+4) \longrightarrow 3 \times (5+4) \longrightarrow$

Definition Language classes

Engendered language

Def. 12 (Language engendered by a word) Let $f \in (\Sigma \cup N)^*$. $L_{\mathcal{G}}(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}_*} g\}$

Def. 13 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^* derived from the axiom.

$$L_{\mathcal{G}} = L_{\mathcal{G}}(S)$$

Definition Language classes

Engendered language

Def. 12 (Language engendered by a word) Let $f \in (\Sigma \cup N)^*$. $L_{\mathcal{G}}(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}_*} g\}$

Def. 13 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^* derived from the axiom.

$$L_{\mathcal{G}} = L_{\mathcal{G}}(S)$$

For instance () $\in L_{\mathcal{G}_2}$:

Definition Language classes

Engendered language

Def. 12 (Language engendered by a word) Let $f \in (\Sigma \cup N)^*$. $L_{\mathcal{G}}(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}_*} g\}$

Def. 13 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^* derived from the axiom.

$$L_{\mathcal{G}} = L_{\mathcal{G}}(S)$$

For instance () $\in L_{\mathcal{G}_2}$: $S \to (S)S$

Definition Language classes

Engendered language

Def. 12 (Language engendered by a word) Let $f \in (\Sigma \cup N)^*$. $L_{\mathcal{G}}(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}_*} g\}$

Def. 13 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^* derived from the axiom.

$$L_{\mathcal{G}} = L_{\mathcal{G}}(S)$$

For instance () $\in L_{\mathcal{G}_2}: S \to (S)S \to ()S$

Definition Language classes

Engendered language

Def. 12 (Language engendered by a word) Let $f \in (\Sigma \cup N)^*$. $L_{\mathcal{G}}(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}_*} g\}$

Def. 13 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^* derived from the axiom.

$$L_{\mathcal{G}} = L_{\mathcal{G}}(S)$$

For instance () $\in L_{\mathcal{G}_2}$: $S \to (S)S \to ()S \to ()$

Definition Language classes

Engendered language

Def. 12 (Language engendered by a word) Let $f \in (\Sigma \cup N)^*$. $L_{\mathcal{G}}(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}_*} g\}$

Def. 13 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^* derived from the axiom.

 $L_{\mathcal{G}} = L_{\mathcal{G}}(S)$

For instance () $\in L_{\mathcal{G}_2}$: $S \to (S)S \to ()S \to ()$ as well as ((())), ()()(), ((()()))...

Definition Language classes

Engendered language

Def. 12 (Language engendered by a word) Let $f \in (\Sigma \cup N)^*$. $L_{\mathcal{G}}(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}_*} g\}$

Def. 13 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^* derived from the axiom.

 $L_{\mathcal{G}} = L_{\mathcal{G}}(S)$

For instance () $\in L_{\mathcal{G}_2}$: $S \to (S)S \to ()S \to ()$ as well as ((())), ()()(), ((()()))... but)()($\notin L_{\mathcal{G}_2}$, even though the following is a licit derivation :

Definition Language classes

Engendered language

Def. 12 (Language engendered by a word) Let $f \in (\Sigma \cup N)^*$. $L_{\mathcal{G}}(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}_*} g\}$

Def. 13 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^* derived from the axiom.

 $L_{\mathcal{G}} = L_{\mathcal{G}}(S)$

For instance $() \in L_{\mathcal{G}_2}$: $S \to (S)S \to ()S \to ()$ as well as ((())), ()()(), ((()()))... but $)()(\not\in L_{\mathcal{G}_2}$, even though the following is a licit derivation : $)S(\to$

Definition Language classes

Engendered language

Def. 12 (Language engendered by a word) Let $f \in (\Sigma \cup N)^*$. $L_{\mathcal{G}}(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}_*} g\}$

Def. 13 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^* derived from the axiom.

 $L_{\mathcal{G}} = L_{\mathcal{G}}(S)$

For instance () $\in L_{\mathcal{G}_2}$: $S \to (S)S \to ()S \to ()$ as well as ((())), ()()(), ((()())))... but)()($\notin L_{\mathcal{G}_2}$, even though the following is a licit derivation :) $S(\to)(S)S(\to)$

Definition Language classes

Engendered language

Def. 12 (Language engendered by a word) Let $f \in (\Sigma \cup N)^*$. $L_{\mathcal{G}}(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}_*} g\}$

Def. 13 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^* derived from the axiom.

 $L_{\mathcal{G}} = L_{\mathcal{G}}(S)$

For instance () $\in L_{\mathcal{G}_2}$: $S \to (S)S \to ()S \to ()$ as well as ((())), ()()(), ((()()))... but)()($\notin L_{\mathcal{G}_2}$, even though the following is a licit derivation :) $S(\to)(S)S(\to)()S(\to)$

Definition Language classes

Engendered language

Def. 12 (Language engendered by a word) Let $f \in (\Sigma \cup N)^*$. $L_{\mathcal{G}}(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}_*} g\}$

Def. 13 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^* derived from the axiom.

 $L_{\mathcal{G}} = L_{\mathcal{G}}(S)$

For instance () $\in L_{\mathcal{G}_2}$: $S \to (S)S \to ()S \to ()$ as well as ((())), ()()(), ((()()()))... but)()($\notin L_{\mathcal{G}_2}$, even though the following is a licit derivation :) $S(\to)(S)S(\to)()S(\to)()($

Definition Language classes

Engendered language

Def. 12 (Language engendered by a word) Let $f \in (\Sigma \cup N)^*$. $L_{\mathcal{G}}(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}_*} g\}$

Def. 13 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^* derived from the axiom.

 $L_{\mathcal{G}} = L_{\mathcal{G}}(S)$

For instance () $\in L_{\mathcal{G}_2}$: $S \to (S)S \to ()S \to ()$ as well as ((())), ()()(), ((()()()))... but)()($\notin L_{\mathcal{G}_2}$, even though the following is a licit derivation : $)S(\to)(S)S(\to)()S(\to)()($ for there is no way to arrive at)S(starting with S.

Example

 $G_4 = E \rightarrow E + T \mid T, T \rightarrow T \times F \mid F, F \rightarrow (E) \mid a$

Definition

Language classes

a + a, $a + (a \times a)$, ...

37 / 112

Definition Language classes

Proto-word

Def. 14 (Proto-word)

A proto-word (or proto-sentence) is a word on $(\Sigma \cup N)^* N(\Sigma \cup N)^*$ (that is, a word containing at least one letter of N) produced by a derivation from the axiom.

$$E \rightarrow E + T \rightarrow E + T * F \rightarrow T + T * F \rightarrow T + F * F \rightarrow T + a * F \rightarrow F + a * F \rightarrow a + a * F \rightarrow a / H / a / H / a$$

Definition Language classes

Multiple derivations

A given word may have several derivations: $E \rightarrow E + E \rightarrow F + E \rightarrow F + F \rightarrow 3 + F \rightarrow 3 + 4$

39 / 112

Definition Language classes

Multiple derivations

A given word may have several derivations: $E \rightarrow E + E \rightarrow F + E \rightarrow F + F \rightarrow 3 + F \rightarrow 3 + 4$ $E \rightarrow E + E \rightarrow E + F \rightarrow E + 4 \rightarrow F + 4 \rightarrow 3 + 4$

Definition Language classes

Multiple derivations

A given word may have several derivations:

$$E \rightarrow E + E \rightarrow F + E \rightarrow F + F \rightarrow 3 + F \rightarrow 3 + 4$$

 $E \rightarrow E + E \rightarrow E + F \rightarrow E + 4 \rightarrow F + 4 \rightarrow 3 + 4$

 \ldots but if the grammar is not ambiguous, there is only one ${\rm left}$ derivation:

Definition Language classes

Multiple derivations

A given word may have several derivations:

 $E \rightarrow E + E \rightarrow F + E \rightarrow F + F \rightarrow 3 + F \rightarrow 3 + 4$

 $E \rightarrow E + E \rightarrow E + F \rightarrow E + 4 \rightarrow F + 4 \rightarrow 3 + 4$

... but if the grammar is not ambiguous, there is only one **left** derivation:

 $\underline{E} \rightarrow \underline{E} + E \rightarrow \underline{F} + E \rightarrow 3 + \underline{E} \rightarrow 3 + \underline{F} \rightarrow 3 + 4$

Definition Language classes

Multiple derivations

A given word may have several derivations:

$$E \rightarrow E + E \rightarrow F + E \rightarrow F + F \rightarrow 3 + F \rightarrow 3 + 4$$

 $E \rightarrow E + E \rightarrow E + F \rightarrow E + 4 \rightarrow F + 4 \rightarrow 3 + 4$

... but if the grammar is not ambiguous, there is only one **left** derivation:

 $\underline{E} \rightarrow \underline{E} + E \rightarrow \underline{F} + E \rightarrow 3 + \underline{E} \rightarrow 3 + \underline{F} \rightarrow 3 + 4$

parsing: trying to find the/a left derivation (resp. right)

Definition Language classes

Derivation tree

For context-free languages, there is a way to represent the set of equivalent derivations, via a derivation tree which shows all the derivation independantly of their order.

Definition Language classes

Structural analysis

Syntactic trees are precious to give access to the semantics

Definition Language classes

Ambiguity

When a grammar can assign more than one derivation tree to a word $w \in L(G)$ (or more than one left derivation), the grammar is *ambiguous*.

For instance, \mathcal{G}_3 is ambiguous, since it can assign the two following trees to $1+2\times3:$

Definition Language classes

About ambiguity

- Ambiguity is not desirable for the semantics
- Useful artificial languages are rarely ambiguous
- There are context-free languages that are intrinsequely ambiguous (3)
- Natural languages are notoriously ambiguous...

$$(3) \qquad \{a^n b a^m b a^p b a^q | (n \ge q \land m \ge p) \lor (n \ge m \land p \ge q)\}$$

Definition Language classes

Comparison of grammars

- \bullet different languages generated \Rightarrow different grammars
- same language generated by \mathcal{G} and \mathcal{G}' :

 \Rightarrow same weak generative power

• same language generated by \mathcal{G} and \mathcal{G}' , and same structural decomposition : \Rightarrow same strong generative power

Definition Language classes

- Language classes
- 3 Regular Languages
- 4 Formal complexity of Natural Languages

Definition Language classes

Principle

Define language families on the basis of properties of the grammars that generate them :

- Four classes are defined, they are included one in another
- A language is of type k if it can be recognized by a type k grammar (and thus, by definition, by a type k 1 grammar); and cannot be recognized by a grammar of type k + 1.

Definition Language classes

Chomsky's hierarchy

type 0 No restriction on

$$\mathcal{P} \subset (X \cup V)^* V (X \cup V)^* \, imes \, (X \cup V)^*.$$

- type 1 (*context-sensitive* grammars) All rules of P are of the shape (u_1Su_2, u_1mu_2) , where u_1 and $u_2 \in (X \cup V)^*$, $S \in V$ and $m \in (X \cup V)^+$.
- type 2 (*context-free* grammar) All rules of P are of the shape (S, m), where $S \in V$ and $m \in (X \cup V)^*$.
- type 3 (*regular* grammars) All rules of P are of the shape (S, m), where $S \in V$ and $m \in X.V \cup X \cup \{\varepsilon\}$.

Definition Language classes

Examples

type 3: $S \rightarrow aS \mid aB \mid bB \mid cA$ $B \rightarrow bB \mid b$ $A \rightarrow cS \mid bB$

48 / 112

Definition Language classes

Examples

type 3: $S \rightarrow aS \mid aB \mid bB \mid cA$ $B \rightarrow bB \mid b$ $A \rightarrow cS \mid bB$

type 2: $E \rightarrow E + T \mid T, T \rightarrow T \times F \mid F, F \rightarrow (E) \mid a$

Definition Language classes

Example 1 type 0

Type 0:

Definition Language classes

Example 1 type 0

Type 0:

generated language : words with an equal number of a, b, and c.

Definition Language classes

Example 2: type 0

50 / 112

Definition Language classes

Example 2: type 0 (cont'd)

Definition Language classes

Language families

52 / 112

Definition Language classes

Remarks

- There are others ways to classify languages,
 - either on other properties of the grammars;
 - or on other properties of the languages
- Nested structures are preferred, but it's not necessary
- When classes are nested, it is expected to have a growth of complexity/expressive power

Definition Language classes

- alphabet, word, concatenation, language
- \bullet operations on languages : $\cup,$., * ...
- formal grammars : rewriting devices
- classes of grammars/languages/problems

Today's programme:

- play with a couple of grammars
- a word about syntax
- main topic: regular languages and automata

Definition Language classes

Let's play with grammars

For each of the following grammars, give the generated language, and the type they have in Chomsky's hierarchy.

$$bC \rightarrow bc$$

$$cC \rightarrow cc$$

Definition Language classes

Let's play with grammars (cont'd)

Give a contex-free grammar that generates each of the following languages (alphabet $\Sigma = \{a, b, c\}$).

•
$$L_0 = \{ w \in X^* / w = a^n ; n \ge 0 \}$$

• $L'_0 = \{ w \in X^* / w = a^n b^n ca ; n \ge 0 \}$
• $L_1 = \{ w \in X^* / w = a^n b^n c^p ; n > 0 \text{ et } p > 0 \}$
• $L_2 = \{ w \in X^* / w = a^n b^n a^m b^m ; n, m \ge 1 \}$
• $L'_3 = \{ w \in X^* / |w|_a = |w]_b \}$
• $L_3 = \{ w \in X^* / |w|_a = 2|w]_b \}$
• $L_4 = \{ w \in X^* / \exists x \in X^* \text{ tq } w = x\overline{x} \}$
• $L_5 = \{ w \in X^* / w = \overline{w} \}$

Definition Language classes

What about artificial languages? I

- (i) If A is a predicate name from L_p vocabulary, and each of $t_1...t_n$ are constants or variables from L_p vocabulary, then $A(t_1,...,t_n)$ is a well-formed formula (wff).
- (ii) If φ is a wff, then so is $\neg \varphi$.
- (iii) If φ and ψ are wffs, then $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$, $(\varphi \leftrightarrow \psi)$ are wffs.
- (iv) If φ is a wff and x a variable, then $\forall x \varphi$ and $\exists x \varphi$ are wfss.
- (v) Nothing else is a well-formed formula.

Definition Language classes

What about artificial languages? II

(

Terminal alphabet :

$$\{\underbrace{x, y, z}_{\text{var.}}, \underbrace{a, b, c}_{\text{const.}}, \underbrace{P, Q, A, B, F}_{\text{prédicats}}, \underbrace{\wedge, \vee, \rightarrow, \leftrightarrow, \neg}_{\text{opér.}} \underbrace{(,)}_{\text{par.}}, \underbrace{\forall, \exists}_{\text{quant.}}\}$$
non terminal alphabet: {Var, Cte, Pred, Terme, Quant, Ope, Atom, Form}.
Var $\rightarrow x \mid y \mid z$
Cte $\rightarrow a \mid b \mid c$
Terme \rightarrow Var $\mid Cte$
Pred $\rightarrow P \mid Q \mid A \mid B \mid F$
Ope $\rightarrow \land \mid \lor \mid \exists$

Definition Language classes

What about artificial languages? III

References I

- Bar-Hillel, Yehoshua, Perles, Micha, & Shamir, Eliahu. 1961. On formal properties of simple phrase structure grammars. STUF-Language Typology and Universals, 14(1-4), 143–172.
- Bresnan, Joan (ed). 1982. The Mental Representation of Grammatical Relations. MIT Press.

Chomsky, Noam. 1957. Syntactic Structures. Den Haag: Mouton & Co.

- Gazdar, Gerald, & Pullum, Geoffrey K. 1985 (May). Computationally Relevant Properties of Natural Languages and Their Grammars. Tech. rept. Center for the Study of Language and Information, Leland Stanford Junior University.
- Joshi, Aravind K. 1985. Tree Adjoining Grammars: How Much Context-Sensitivity is Required to Provide Reasonable Structural Descriptions? Tech. rept. Department of Computer and Information Science, University of Pennsylvania.
- Langendoen, D Terence, & Postal, Paul Martin. 1984. *The vastness of natural languages*. Basil Blackwell Oxford.
- Mannell, Robert. 1999. Infinite number of sentences. part of a set of class notes on the Internet. http://clas.mq.edu.au/speech/infinite_sentences/.

Pollard, Carl, & Sag, Ivan A. 1994. Head-Driven Phrase Structure Grammar. Stanford: CSLI.

- Schieber, Stuart M. 1985. Evidence against the Context-Freeness of Natural Language. Linguistics and Philosophy, 8(3), 333–343.
- Stabler, Edward P. 2011. Computational perspectives on minimalism. Oxford handbook of linguistic minimalism, 617–643.
- Steedman, Mark. 1988. Combinators and Grammars. Pages 417–442 of: Oehrle, Richard T., Bach, Emmon, & Wheeler, Deirdre (eds), Categorical Grammars and Natural Language Structures, vol. 32.
 D. Reidel Publishing Co.

