Formal Languages applied to Linguistics

Pascal Amsili

Laboratoire Lattice, Université Sorbonne Nouvelle
Cogmaster, september 2019

Good questions

Why would one consider natural language as a formal language?

- it allows to describe the language in a formal/compact/elegant way
- it allows to compare various languages (via classes of languages established by mathematicians)
- it give algorithmic tools to recognize and to analyse words of a language.

$$
\begin{aligned}
& \text { recognize } u \text { : decide whether } u \in L \\
& \text { analyse } u \quad \text { : show the internal structure of } u
\end{aligned}
$$

Overview

(1) Formal Languages
(2) Formal Grammars

- Definition
- Language classes
(3) Regular Languages
(4) Formal complexity of Natural Languages

Formal Languages

Introduction

Formal grammars have been proposed by Chomsky as one of the available means to characterize a formal language.
Other means include :

- Turing machines (automata)
- λ-terms
- ...

Formal grammar

Def. 9 ((Formal) Grammar)
A formal grammar is defined by $\langle\Sigma, N, S, P\rangle$ where

- Σ is an alphabet
- N is a disjoint alphabet non-terminal vocabulary)
- $S \in V$ is a distinguished elemnt of N, called the axiom
- P is a set of « production rules », namely a subset of the cartesian product $(\Sigma \cup N)^{*} N(\Sigma \cup N)^{*} \times(\Sigma \cup N)^{*}$.

Formal Languages

Formal Grammars

Regular Languages Formal complexity of Natural Languages

References

Definition

Language classes

Examples

$\langle\Sigma, N, S, P\rangle$

$\mathcal{G}_{0}=\langle$

Formal Languages

Formal Grammars

Regular Languages Formal complexity of Natural Languages References

Definition

Language classes

Examples

$\langle\Sigma, N, S, P\rangle$

$\mathcal{G}_{0}=\langle\{$ joe, sam, sleeps $\}$,

Formal Languages

Formal Grammars

Regular Languages Formal complexity of Natural Languages References

Definition

Language classes

Examples

$$
\langle\Sigma, N, S, P\rangle
$$

$\mathcal{G}_{0}=\langle\{j$ joe, sam, sleeps $\},\{N, V, S\}$,

Definition

Language classes

Examples

$$
\langle\Sigma, N, S, P\rangle
$$

$\mathcal{G}_{0}=\langle\{j$ joe, sam, sleeps $\},\{N, V, S\}, S$,

Definition

Examples

$$
\begin{array}{r}
\langle\Sigma, N, S, P\rangle \\
\left.\mathcal{G}_{0}=\left\langle\{\text { joe , sam, sleeps }\},\{N, V, S\}, S,\left\{\begin{array}{l}
(N, \text { joe }) \\
(N, \text { sam }) \\
(V, \text { sleeps }) \\
(S, N V)
\end{array}\right\}\right\rangle\right\}
\end{array}
$$

Definition

Examples

$$
\begin{gathered}
\langle\Sigma, N, S, P\rangle \\
\left.\mathcal{G}_{0}=\left\langle\{\text { joe , sam, sleeps }\},\{N, V, S\}, S,\left\{\begin{array}{l}
N \rightarrow \text { joe } \\
N \rightarrow \text { sam } \\
V \rightarrow \text { sleeps } \\
S \rightarrow N V
\end{array}\right\}\right\rangle\right\}
\end{gathered}
$$

Formal Languages
Formal Grammars
Regular Languages Formal complexity of Natural Languages References

Definition

Examples (cont'd)

$$
\begin{aligned}
& \left.\mathcal{G}_{1}=\left\langle\{j e a n, \text { dort }\},\{N p, S N, S V, V, S\}, S,\left\{\begin{array}{l}
S \rightarrow S N S V \\
S N \rightarrow N p \\
S V \rightarrow V \\
N p \rightarrow \text { jean } \\
V \rightarrow \text { dort }
\end{array}\right\}\right\rangle\right\} \\
& \mathcal{G}_{2}=\langle\{(,)\},\{S\}, S,\{S \longrightarrow \varepsilon \mid(S) S\}\rangle
\end{aligned}
$$

Formal Languages

Formal Grammars

Regular Languages Formal complexity of Natural Languages

References

Definition

Language classes

Notation

$$
\begin{array}{rll}
\mathcal{G}_{3}: E & & E+E \\
& \left\lvert\, \begin{array}{l}
\mid \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
F
\end{array}\right. & 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{array}
$$

Formal Languages

Formal Grammars

Regular Languages Formal complexity of Natural Languages References

Definition

Language classes

Notation

$$
\left.\begin{array}{rl}
\mathcal{G}_{3}: E & \longrightarrow \\
& E+E \\
& E \times E \\
& (E) \\
& \mid \\
& F
\end{array}\right]
$$

Definition

Language classes

Notation

$$
\begin{aligned}
& \mathcal{G}_{3}: E \longrightarrow E+E \\
& E \times E \\
& \text { (E) } \\
& F \\
& F \quad \longrightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9 \\
& \mathcal{G}_{3}=\langle\{+, \times,(,), 0,1,2,3,4,5,6,7,8,9\},\{E, F\}, E,\{\ldots\}\rangle \\
& G_{4}=E \rightarrow E+T|T, T \rightarrow T \times F| F, F \rightarrow(E) \mid a
\end{aligned}
$$

Immediate Derivation

Def. 10 (Immediate derivation)

Let $\mathcal{G}=\langle X, V, S, P\rangle$ a grammar, $(f, g) \in(X \cup V)^{*}$ two "words", $r \in P$ a production rule, such that $r: A \longrightarrow u\left(u \in(X \cup V)^{*}\right)$.

- f derives into g (immediate derivation) with the rule r (noted $f \xrightarrow{r} g$) iff
$\exists v, w$ s.t. $f=v A w$ and $g=v u w$
- f derives into g (immediate derivation) in the grammar \mathcal{G} (noted $f \xrightarrow{\mathcal{G}} g$) iff $\exists r \in P$ s.t. $f \xrightarrow{r} g$.

Formal Languages

Formal Grammars

Regular Languages Formal complexity of Natural Languages References

Definition

Language classes

Derivation

Def. 11 (Derivation)
$f \xrightarrow{\mathcal{G}^{*}} g$ if $f=g$
or
$\exists f_{0}, f_{1}, f_{2}, \ldots, f_{n}$ s.t. $f_{0}=f$

$$
f_{n}=g
$$

$$
\forall i \in[1, n]: f_{i-1} \xrightarrow{\mathcal{G}} f_{i}
$$

An example with \mathcal{G}_{0} :
$N V$ joe N

Formal Languages

Definition

Language classes

Derivation

Def. 11 (Derivation)
$f \xrightarrow{\mathcal{G} *} g$ if $f=g$
or
$\exists f_{0}, f_{1}, f_{2}, \ldots, f_{n}$ s.t. $f_{0}=f$

$$
f_{n}=g
$$

$$
\forall i \in[1, n]: f_{i-1} \xrightarrow{\mathcal{G}} f_{i}
$$

An example with \mathcal{G}_{0} :
$N V$ joe $N \longrightarrow$ sam V joe N

Definition

Derivation

Def. 11 (Derivation)

$$
\begin{aligned}
& f \xrightarrow{\mathcal{G}_{*}} g \text { if } \begin{array}{l}
f=g \\
\exists f_{0}, f_{1}, f_{2}, \ldots, f_{n} \text { s.t. } \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\forall i
\end{array}=g \\
& \in[1, n]: f_{i-1} \xrightarrow{\mathcal{G}} f_{i}
\end{aligned}
$$

An example with \mathcal{G}_{0} :

$$
N V \text { joe } N \longrightarrow \operatorname{sam} V \text { joe } N \longrightarrow \text { sam } V \text { joe joe or }
$$

Derivation

Def. 11 (Derivation)

$$
\begin{aligned}
&\left.f \xrightarrow{\mathcal{G} *} g \text { if } \begin{array}{l}
f=g \\
\exists f_{0}, f_{1}, f_{2}, \ldots, f_{n} \text { s.t. } \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\forall i
\end{array}\right)=f \\
& \in[1, n]: f_{i-1} \xrightarrow{\mathcal{G}} f_{i}
\end{aligned}
$$

An example with \mathcal{G}_{0} :

$$
N V \text { joe } N \longrightarrow \operatorname{sam} V \text { joe } N \longrightarrow \begin{array}{ll}
\text { sam } V \text { joe joe } & \begin{array}{c}
\text { or } \\
\text { sam } V \text { joe sam }
\end{array} \\
\text { or }
\end{array}
$$

Derivation

Def. 11 (Derivation)

$$
\begin{aligned}
& f \xrightarrow{\mathcal{G}_{*}} g \text { if } \begin{array}{l}
f=g \\
\exists f_{0}, f_{1}, f_{2}, \ldots, f_{n} \text { s.t. } \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\forall i
\end{array}=g \\
& \in[1, n]: f_{i-1} \xrightarrow{\mathcal{G}} f_{i}
\end{aligned}
$$

An example with \mathcal{G}_{0} :

$$
N V \text { joe } N \longrightarrow \text { sam } V \text { joe } N \longrightarrow \begin{aligned}
& \text { sam } V \text { joe joe } \\
& \\
& \\
& \text { sam } V \text { joe sam } \\
& \text { sam sleeps joe } N
\end{aligned} \begin{aligned}
& \text { or } \\
& \text { or } \\
& \text { or }
\end{aligned}
$$

Definition

Endpoint of a derivation

$$
\begin{aligned}
& \mathcal{G}_{3}: E \longrightarrow E+E \\
& \text { | } E \times E \\
& \text { | (E) } \\
& \text { | } F \\
& F \longrightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

An example with \mathcal{G}_{3} :
$E \times E$

Definition

Endpoint of a derivation

$$
\begin{aligned}
\mathcal{G}_{3}: E & \longrightarrow+E \\
& E \times E \\
& \mid(E) \\
& \mid \\
F & \\
& \\
& 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

An example with \mathcal{G}_{3} :
$E \times E \longrightarrow F \times E$

Definition

Endpoint of a derivation

$$
\begin{aligned}
& \mathcal{G}_{3}: E \longrightarrow E+E \\
& E \times E \\
& \text { (E) } \\
& \text { F } \\
& F \longrightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

An example with \mathcal{G}_{3} :
$E \times E \longrightarrow F \times E \longrightarrow 3 \times E$

Formal Languages

Definition

Endpoint of a derivation

$$
\begin{aligned}
& \mathcal{G}_{3}: E \longrightarrow E+E \\
& E \times E \\
& \text { | (E) } \\
& \text { | } F \\
& F \longrightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

An example with \mathcal{G}_{3} :
$E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times(E)$

Formal Languages

Definition

Endpoint of a derivation

$$
\begin{aligned}
\mathcal{G}_{3}: E & \longrightarrow+E \\
& E \times E \\
& E(E) \\
& \mid F \\
F & \longrightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

An example with \mathcal{G}_{3} :
$E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times(E) \longrightarrow 3 \times(E+E)$

Formal Languages
Formal Grammars
Regular Languages

Definition

Endpoint of a derivation

An example with \mathcal{G}_{3} :
$E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times(E) \longrightarrow 3 \times(E+E) \longrightarrow$ $3 \times(E+F)$

Formal Languages
Formal Grammars
Regular Languages

Definition

Endpoint of a derivation

An example with \mathcal{G}_{3} :
$E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times(E) \longrightarrow 3 \times(E+E) \longrightarrow$ $3 \times(E+F) \longrightarrow 3 \times(E+4)$

Formal Languages
Formal Grammars
Regular Languages

Definition

Endpoint of a derivation

An example with \mathcal{G}_{3} :
$E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times(E) \longrightarrow 3 \times(E+E) \longrightarrow$ $3 \times(E+F) \longrightarrow 3 \times(E+4) \longrightarrow 3 \times(F+4)$

Definition

Endpoint of a derivation

An example with \mathcal{G}_{3} :
$E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times(E) \longrightarrow 3 \times(E+E) \longrightarrow$ $3 \times(E+F) \longrightarrow 3 \times(E+4) \longrightarrow 3 \times(F+4) \longrightarrow 3 \times(5+4)$

Definition

Endpoint of a derivation

An example with \mathcal{G}_{3} :
$E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times(E) \longrightarrow 3 \times(E+E) \longrightarrow$ $3 \times(E+F) \longrightarrow 3 \times(E+4) \longrightarrow 3 \times(F+4) \longrightarrow 3 \times(5+4) \longrightarrow$

Engendered language

Def. 12 (Language engendered by a word)
Let $f \in(\Sigma \cup N)^{*}$.
$L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G} *} g\right\}$
Def. 13 (Language engendered by a grammar)
The language engendered by a grammar \mathcal{G} is the set of words of Σ^{*} derived from the axiom.
$L_{\mathcal{G}}=L_{\mathcal{G}}(S)$

Engendered language

Def. 12 (Language engendered by a word)
Let $f \in(\Sigma \cup N)^{*}$.
$L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G} *} g\right\}$
Def. 13 (Language engendered by a grammar)
The language engendered by a grammar \mathcal{G} is the set of words of Σ^{*} derived from the axiom.
$L_{\mathcal{G}}=L_{\mathcal{G}}(S)$
For instance ()$\in L_{\mathcal{G}_{2}}$:

Engendered language

Def. 12 (Language engendered by a word)
Let $f \in(\Sigma \cup N)^{*}$.
$L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G} *} g\right\}$
Def. 13 (Language engendered by a grammar)
The language engendered by a grammar \mathcal{G} is the set of words of Σ^{*} derived from the axiom.
$L_{\mathcal{G}}=L_{\mathcal{G}}(S)$
For instance ()$\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S$

Engendered language

Def. 12 (Language engendered by a word)
Let $f \in(\Sigma \cup N)^{*}$.
$L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G} *} g\right\}$
Def. 13 (Language engendered by a grammar)
The language engendered by a grammar \mathcal{G} is the set of words of Σ^{*} derived from the axiom.
$L_{\mathcal{G}}=L_{\mathcal{G}}(S)$
For instance ()$\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S \rightarrow() S$

Engendered language

Def. 12 (Language engendered by a word)
Let $f \in(\Sigma \cup N)^{*}$.
$L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G} *} g\right\}$
Def. 13 (Language engendered by a grammar)
The language engendered by a grammar \mathcal{G} is the set of words of Σ^{*} derived from the axiom.
$L_{\mathcal{G}}=L_{\mathcal{G}}(S)$
For instance ()$\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S \rightarrow() S \rightarrow()$

Engendered language

Def. 12 (Language engendered by a word)
Let $f \in(\Sigma \cup N)^{*}$.
$L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G} *} g\right\}$
Def. 13 (Language engendered by a grammar)
The language engendered by a grammar \mathcal{G} is the set of words of Σ^{*} derived from the axiom.
$L_{\mathcal{G}}=L_{\mathcal{G}}(S)$
For instance ()$\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S \rightarrow() S \rightarrow()$ as well as $((())),()()(),((()()())) \ldots$

Engendered language

Def. 12 (Language engendered by a word)
Let $f \in(\Sigma \cup N)^{*}$.
$L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G} *} g\right\}$
Def. 13 (Language engendered by a grammar)
The language engendered by a grammar \mathcal{G} is the set of words of \sum^{*} derived from the axiom.
$L_{\mathcal{G}}=L_{\mathcal{G}}(S)$
For instance ()$\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S \rightarrow() S \rightarrow()$ as well as $((())),()()(),((()()())) \ldots$
but $)()\left(\notin L_{\mathcal{G}_{2}}\right.$, even though the following is a licit derivation :

Engendered language

Def. 12 (Language engendered by a word)
Let $f \in(\Sigma \cup N)^{*}$.
$L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G} *} g\right\}$
Def. 13 (Language engendered by a grammar)
The language engendered by a grammar \mathcal{G} is the set of words of Σ^{*} derived from the axiom.
$L_{\mathcal{G}}=L_{\mathcal{G}}(S)$
For instance ()$\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S \rightarrow() S \rightarrow()$ as well as $((())),()()(),((()()())) \ldots$
but $)()\left(\notin L_{\mathcal{G}_{2}}\right.$, even though the following is a licit derivation :
)S \rightarrow

Engendered language

Def. 12 (Language engendered by a word)
Let $f \in(\Sigma \cup N)^{*}$.
$L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G} *} g\right\}$
Def. 13 (Language engendered by a grammar)
The language engendered by a grammar \mathcal{G} is the set of words of \sum^{*} derived from the axiom.
$L_{\mathcal{G}}=L_{\mathcal{G}}(S)$
For instance ()$\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S \rightarrow() S \rightarrow()$ as well as $((())),()()(),((()()())) \ldots$
but $)()\left(\notin L_{\mathcal{G}_{2}}\right.$, even though the following is a licit derivation : $) S(\rightarrow)(S) S(\rightarrow$

Engendered language

Def. 12 (Language engendered by a word)
Let $f \in(\Sigma \cup N)^{*}$.
$L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G} *} g\right\}$
Def. 13 (Language engendered by a grammar)
The language engendered by a grammar \mathcal{G} is the set of words of \sum^{*} derived from the axiom.
$L_{\mathcal{G}}=L_{\mathcal{G}}(S)$
For instance ()$\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S \rightarrow() S \rightarrow()$ as well as $((())),()()(),((()()())) \ldots$
but $)()\left(\notin L_{\mathcal{G}_{2}}\right.$, even though the following is a licit derivation : $) S(\rightarrow)(S) S(\rightarrow)() S(\rightarrow$

Engendered language

Def. 12 (Language engendered by a word)
Let $f \in(\Sigma \cup N)^{*}$.
$L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G} *} g\right\}$
Def. 13 (Language engendered by a grammar)
The language engendered by a grammar \mathcal{G} is the set of words of \sum^{*} derived from the axiom.
$L_{\mathcal{G}}=L_{\mathcal{G}}(S)$
For instance ()$\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S \rightarrow() S \rightarrow()$ as well as $((())),()()(),((()()())) \ldots$
but $)()\left(\notin L_{\mathcal{G}_{2}}\right.$, even though the following is a licit derivation : $) S(\rightarrow)(S) S(\rightarrow)() S(\rightarrow)()($

Engendered language

Def. 12 (Language engendered by a word)
Let $f \in(\Sigma \cup N)^{*}$.
$L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G} *} g\right\}$
Def. 13 (Language engendered by a grammar)
The language engendered by a grammar \mathcal{G} is the set of words of \sum^{*} derived from the axiom.
$L_{\mathcal{G}}=L_{\mathcal{G}}(S)$
For instance ()$\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S \rightarrow() S \rightarrow()$ as well as $((())),()()(),((()()())) \ldots$
but $)()\left(\notin L_{\mathcal{G}_{2}}\right.$, even though the following is a licit derivation :
$) S(\rightarrow)(S) S(\rightarrow)() S(\rightarrow)()($
for there is no way to arrive at $) S$ (starting with S.

Formal Languages

Formal Grammars

Regular Languages Formal complexity of Natural Languages References

Definition

Language classes

Example

$$
G_{4}=E \rightarrow E+T|T, T \rightarrow T \times F| F, F \rightarrow(E) \mid a
$$

$$
a+a, a+(a \times a), \ldots
$$

Proto-word

Def. 14 (Proto-word)

A proto-word (or proto-sentence) is a word on $(\Sigma \cup N)^{*} N(\Sigma \cup N)^{*}$ (that is, a word containing at least one letter of N) produced by a derivation from the axiom.

$$
\begin{aligned}
& E \rightarrow E+T \rightarrow E+T * F \rightarrow T+T * F \rightarrow T+F * F \rightarrow \\
& T+a * F \rightarrow F+a * F \rightarrow a+a * F \rightarrow \mid \text { 体|A州|a }
\end{aligned}
$$

Formal Languages

Definition

Multiple derivations

A given word may have several derivations:
$E \rightarrow E+E \rightarrow F+E \rightarrow F+F \rightarrow 3+F \rightarrow 3+4$

Formal Languages

Definition

Multiple derivations

A given word may have several derivations:

$$
\begin{aligned}
& E \rightarrow E+E \rightarrow F+E \rightarrow F+F \rightarrow 3+F \rightarrow 3+4 \\
& E \rightarrow E+E \rightarrow E+F \rightarrow E+4 \rightarrow F+4 \rightarrow 3+4
\end{aligned}
$$

Multiple derivations

A given word may have several derivations:
$E \rightarrow E+E \rightarrow F+E \rightarrow F+F \rightarrow 3+F \rightarrow 3+4$
$E \rightarrow E+E \rightarrow E+F \rightarrow E+4 \rightarrow F+4 \rightarrow 3+4$
... but if the grammar is not ambiguous, there is only one left derivation:

Multiple derivations

A given word may have several derivations:
$E \rightarrow E+E \rightarrow F+E \rightarrow F+F \rightarrow 3+F \rightarrow 3+4$
$E \rightarrow E+E \rightarrow E+F \rightarrow E+4 \rightarrow F+4 \rightarrow 3+4$
... but if the grammar is not ambiguous, there is only one left derivation:

$$
\underline{E} \rightarrow \underline{E}+E \rightarrow \underline{F}+E \rightarrow 3+\underline{E} \rightarrow 3+\underline{F} \rightarrow 3+4
$$

Multiple derivations

A given word may have several derivations:
$E \rightarrow E+E \rightarrow F+E \rightarrow F+F \rightarrow 3+F \rightarrow 3+4$
$E \rightarrow E+E \rightarrow E+F \rightarrow E+4 \rightarrow F+4 \rightarrow 3+4$
... but if the grammar is not ambiguous, there is only one left derivation:

$$
\underline{E} \rightarrow \underline{E}+E \rightarrow \underline{F}+E \rightarrow 3+\underline{E} \rightarrow 3+\underline{F} \rightarrow 3+4
$$

parsing: trying to find the/a left derivation (resp. right)

Derivation tree

For context-free languages, there is a way to represent the set of equivalent derivations, via a derivation tree which shows all the derivation independantly of their order.

Definition

Structural analysis

Syntactic trees are precious to give access to the semantics

Ambiguity

When a grammar can assign more than one derivation tree to a word $w \in L(G)$ (or more than one left derivation), the grammar is ambiguous.
For instance, \mathcal{G}_{3} is ambiguous, since it can assign the two follwing trees to $1+2 \times 3$:

About ambiguity

- Ambiguity is not desirable for the semantics
- Useful artificial languages are rarely ambiguous
- There are context-free languages that are intrinsequely ambiguous (3)
- Natural languages are notoriously ambiguous...
(3)

$$
\left\{a^{n} b a^{m} b a^{p} b a^{q} \mid(n \geqslant q \wedge m \geqslant p) \vee(n \geqslant m \wedge p \geqslant q)\right\}
$$

Comparison of grammars

- different languages generated \Rightarrow different grammars
- same language generated by \mathcal{G} and \mathcal{G}^{\prime} :
\Rightarrow same weak generative power
- same language generated by \mathcal{G} and \mathcal{G}^{\prime}, and same structural decomposition: $\quad \Rightarrow$ same strong generative power

Overview

(1) Formal Languages
(2) Formal Grammars

- Definition
- Language classes
(3) Regular Languages
(4) Formal complexity of Natural Languages

Principle

Define language families on the basis of properties of the grammars that generate them :
(1) Four classes are defined, they are included one in another
(2) A language is of type k if it can be recognized by a type k grammar (and thus, by definition, by a type $k-1$ grammar) ; and cannot be recognized by a grammar of type $k+1$.

Chomsky's hierarchy

type 0 No restriction on

$$
P \subset(X \cup V)^{*} V(X \cup V)^{*} \times(X \cup V)^{*}
$$

type 1 (context-sensitive grammars) All rules of P are of the shape $\left(u_{1} S u_{2}, u_{1} m u_{2}\right)$, where u_{1} and $u_{2} \in(X \cup V)^{*}$, $S \in V$ and $m \in(X \cup V)^{+}$.
type 2 (context-free grammar) All rules of P are of the shape (S, m), where $S \in V$ and $m \in(X \cup V)^{*}$.
type 3 (regular grammars) All rules of P are of the shape (S, m), where $S \in V$ and $m \in X . V \cup X \cup\{\varepsilon\}$.

Formal Languages

Definition

Language classes

Examples

```
type 3:
    S }->aS|aB|bB|c
    B }->\textrm{bB}|
    A }->cS|b
```

Formal Languages

Definition

Language classes

Examples

type 3:
$S \rightarrow a S|a B| b B \mid c A$
$B \rightarrow b B \mid b$
$A \rightarrow c S \mid b B$
type 2 :
$E \rightarrow E+T|T, T \rightarrow T \times F| F, F \rightarrow(E) \mid a$

Formal Languages
Formal Grammars
Regular Languages Formal complexity of Natural Languages References

Example 1 type 0

> Type 0:
> $S \rightarrow S A B C \quad A C \rightarrow C A \quad A \rightarrow a$
> $S \rightarrow \varepsilon \quad C A \rightarrow A C \quad B \rightarrow b$
> $A B \rightarrow B A \quad B C \rightarrow C B \quad C \rightarrow c$
> $B A \rightarrow A B \quad C B \rightarrow B C$
> generated language :

Example 1 type 0

Type 0:
$S \rightarrow S A B C \quad A C \rightarrow C A \quad A \rightarrow a$
$S \rightarrow \varepsilon \quad C A \rightarrow A C \quad B \rightarrow b$
$A B \rightarrow B A \quad B C \rightarrow C B \quad C \rightarrow c$
$B A \rightarrow A B \quad C B \rightarrow B C$
generated language : words with an equal number of a, b, and c.

Formal Languages

Definition

Language classes

Example 2: type 0

Type 0: $S \rightarrow \$ S^{\prime} \$ \quad A a \rightarrow a A \quad \$ a \rightarrow a \$$

$$
S^{\prime} \rightarrow a A S^{\prime} \quad A b \rightarrow b A \quad \$ b \rightarrow b \$
$$

$$
S^{\prime} \rightarrow b B S^{\prime} \quad B a \rightarrow a B \quad A \$ \rightarrow \$ a
$$

$$
S^{\prime} \rightarrow \varepsilon \quad B b \rightarrow b B \quad B \$ \rightarrow \$ b
$$

$$
\$ \$ \rightarrow \#
$$

Formal Languages
Formal Grammars
Regular Languages

Definition

Language classes

Example 2: type 0 (cont'd)

$\$$	a	A	b	B	$\$$
a	$\$$	A	b	B	$\$$
a	$\$$	A	b	$\$$	b
a	$\$$	b	A	$\$$	b
a	b	$\$$	A	$\$$	b
a	b	$\$$	$\$$	a	b
a	b	$\#$	a	b	

Formal Languages
Formal Grammars
Regular Languages Formal complexity of Natural Languages

References

Definition

Language classes

Language families

Remarks

- There are others ways to classify languages,
- either on other properties of the grammars;
- or on other properties of the languages
- Nested structures are preferred, but it's not necessary
- When classes are nested, it is expected to have a growth of complexity/expressive power

Taking stock What we've seen so far

- alphabet, word, concatenation, language
- operations on languages: \cup, ., * ...
- formal grammars : rewriting devices
- classes of grammars/languages/problems

Today's programme:

- play with a couple of grammars
- a word about syntax
- main topic: regular languages and automata

Let's play with grammars

For each of the following grammars, give the generated language, and the type they have in Chomsky's hierarchy.

$$
\begin{aligned}
& S \rightarrow S_{1} S_{2} \\
& S_{1} \rightarrow a S_{1} b \mid a b \\
& S_{2} \rightarrow c S_{2} \mid c
\end{aligned}
$$

Let's play with grammars (cont'd)

Give a contex-free grammar that generates each of the following languages (alphabet $\Sigma=\{a, b, c\}$).

- $L_{0}=\left\{w \in X^{*} / w=a^{n} ; n \geq 0\right\}$
- $L_{0}^{\prime}=\left\{w \in X^{*} / w=a^{n} b^{n} c a ; n \geq 0\right\}$
- $L_{1}=\left\{w \in X^{*} / w=a^{n} b^{n} c^{p} ; n>0\right.$ et $\left.p>0\right\}$
- $L_{2}=\left\{w \in X^{*} / w=a^{n} b^{n} a^{m} b^{m} ; n, m \geq 1\right\}$
- $\left.L_{3}^{\prime}=\left\{w \in X^{*} /|w|_{a}=\mid w\right]_{b}\right\}$
- $\left.L_{3}=\left\{w \in X^{*} /|w|_{a}=2 \mid w\right]_{b}\right\}$
- $L_{4}=\left\{w \in X^{*} / \exists x \in X^{*}\right.$ tq $\left.w=x \bar{x}\right\}$
- $L_{5}=\left\{w \in X^{*} / w=\bar{w}\right\}$

What about artificial languages? I

(i) If A is a predicate name from L_{p} vocabulary, and each of $t_{1} \ldots t_{n}$ are constants or variables from L_{p} vocabulary, then $A\left(t_{1}, \ldots, t_{n}\right)$ is a well-formed formula (wff).
(ii) If φ is a wff, then so is $\neg \varphi$.
(iii) If φ and ψ are wffs, then $(\varphi \wedge \psi),(\varphi \vee \psi),(\varphi \rightarrow \psi)$, ($\varphi \leftrightarrow \psi$) are wffs.
(iv) If φ is a wff and x a variable, then $\forall x \varphi$ and $\exists x \varphi$ are wfss.
(v) Nothing else is a well-formed formula.

Formal Languages
Formal Grammars
Regular Languages Formal complexity of Natural Languages

References

What about artificial languages? II

(1) Terminal alphabet:

$$
\{\underbrace{x, y, z}_{\text {var. }}, \underbrace{a, b, c}_{\text {const. }}, \underbrace{P, Q, A, B, F}_{\text {predicats }}, \underbrace{\wedge, \vee, \rightarrow, \leftrightarrow, \neg}_{\text {opér. }} \underbrace{(,)}_{\text {par. }}, \underbrace{\forall, \exists}_{\text {quant. }}\}
$$

non terminal alphabet: \{Var, Cte, Pred, Terme, Quant, Ope, Atom, Form $\}$.
Var $\rightarrow x|y| z$
Cte $\rightarrow a|b| c$
Terme \rightarrow Var \mid Cte
Pred $\rightarrow P|Q| A|B| F$
Ope $\rightarrow \wedge|\vee| \rightarrow \mid \leftrightarrow$
Quant $\rightarrow \forall \mid \exists$

Formal Languages
Formal Grammars
Regular Languages

What about artificial languages? III

References I

Bar-Hillel, Yehoshua, Perles, Micha, \& Shamir, Eliahu. 1961. On formal properties of simple phrase structure grammars. STUF-Language Typology and Universals, 14(1-4), 143-172.

Bresnan, Joan (ed). 1982. The Mental Representation of Grammatical Relations. MIT Press.
Chomsky, Noam. 1957. Syntactic Structures. Den Haag: Mouton \& Co.
Gazdar, Gerald, \& Pullum, Geoffrey K. 1985 (May). Computationally Relevant Properties of Natural Languages and Their Grammars. Tech. rept. Center for the Study of Language and Information, Leland Stanford Junior University.
Joshi, Aravind K. 1985. Tree Adjoining Grammars: How Much Context-Sensitivity is Required to Provide Reasonable Structural Descriptions? Tech. rept. Department of Computer and Information Science, University of Pennsylvania.

Langendoen, D Terence, \& Postal, Paul Martin. 1984. The vastness of natural languages. Basil Blackwell Oxford.

Mannell, Robert. 1999. Infinite number of sentences. part of a set of class notes on the Internet. http://clas.mq.edu.au/speech/infinite_sentences/.
Pollard, Carl, \& Sag, Ivan A. 1994. Head-Driven Phrase Structure Grammar. Stanford: CSLI.
Schieber, Stuart M. 1985. Evidence against the Context-Freeness of Natural Language. Linguistics and Philosophy, 8(3), 333-343.
Stabler, Edward P. 2011. Computational perspectives on minimalism. Oxford handbook of linguistic minimalism, 617-643.

Steedman, Mark. 1988. Combinators and Grammars. Pages 417-442 of: Oehrle, Richard T., Bach, Emmon, \& Wheeler, Deirdre (eds), Categorical Grammars and Natural Language Structures, vol. 32. D. Reidel Publishing Co.

Tesnière, Lucien. 1959. Eléments de syntaxe structurale. Librairie C. Klincksieck.

