
Global joint models for coreference resolution and named entity
classification

Modelos juntos globales para la resolución de la correferencia y de la
clasificación de las entidades nombradas

Pascal Denis
Alpage Project-Team

INRIA and Université Paris 7
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Resumen: En este art́ıculo, combinamos modelos de correferencia, anaforicidad
y clasificación de las entidades nombradas, como un problema de inferencia junta
global utilizando la Programación Lineal Entera (ilp). Nuestras restricciones garan-
tizan: (i) la coherencia entre las decisiones finales de los tres modelos locales, y (ii)
la transitividad de las decisiones de correferencia. Este enfoque proporciona mejoras
significativas en el f -score sobre los corpora ace con las tres métricas de evaluación
principales para la correferencia: muc, b3, y ceaf. A través de ejemplos, modelos
de oráculo y nuestros resultados, se muestra también que es fundamental utilizar es-
tas tres métricas y, en particular, que no se puede confiar únicamente en la métrica
muc.
Palabras clave: Resolución de la correferencia, entidades nombradas, aprendizaje
automático, Programación Lineal Entera (ILP)

Abstract: In this paper, we combine models for coreference, anaphoricity and
named entity classification as a joint, global inference problem using Integer Linear
Programming (ilp). Our constraints ensure: (i) coherence between the final deci-
sions of the three local models, and (ii) transitivity of multiple coreference decisions.
This approach provides significant f -score improvements on the ace datasets for
all three main coreference metrics: muc, b3, and ceaf. Through examples, oracle
models, and our results, we also show that it is fundamental to use all three of these
metrics, and in particular, to never rely solely on the muc metric.
Keywords: Coreference Resolution, Named Entities, Machine Learning, Integer
Linear Programming (ILP)

1 Introduction

Coreference resolution involves imposing a
partition on a set of mentions in a text; each
partition corresponds to some entity in a dis-
course model. Early machine learning ap-
proaches for the task which rely on local,
discriminative pairwise classifiers (Soon, Ng,
and Lim, 2001; Ng and Cardie, 2002b; Mor-
ton, 2000; Kehler et al., 2004) made consid-
erable progress in creating robust coreference
systems, but their performance still left much
room for improvement. This stems from two
main deficiencies:

• Decision locality. Decisions are made
independently of others; a separate clus-
tering step forms chains from pairwise

classifications. But, coreference clearly
should be conditioned on properties of
an entity as a whole.

• Knowledge bottlenecks. Corefer-
ence involves many different factors, e.g.,
morphosyntax, discourse structure and
reasoning. Yet most systems rely on
small sets of shallow features. Accu-
rately predicting such information and
using it to constrain coreference is dif-
ficult, so its potential benefits often go
unrealized due to error propagation.

More recent work has sought to address
these limitations. For example, to ad-
dress decision locality, McCallum and Well-
ner (2004) use conditional random fields with
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model structures in which pairwise decisions
influence others. Denis (2007) and Klenner
(2007) use integer linear programming (ilp)
to perform global inference via transitivity
constraints between different coreference de-
cisions.1 Haghighi and Klein (2007) provide
a fully generative model that combines global
properties of entities across documents with
local attentional states. Denis and Baldridge
(2008) use a ranker to compare antecedents
for an anaphor simultaneously rather than
in the standard pairwise manner. To ad-
dress the knowledge bottleneck problem, De-
nis and Baldridge (2007) use ilp for joint
inference using a pairwise coreference model
and a model for determining the anaphoric-
ity of mentions. Also, Denis and Baldridge
(2008) and Bengston and Roth (2008) use
models and features, respectively, that at-
tend to particular types of mentions (e.g.,
full noun phrases versus pronouns). Further-
more, Bengston and Roth (2008) use a wider
range of features than are normally consid-
ered, and in particular use predicted features
for later classifiers, to considerably boost per-
formance.

In this paper, we use ilp to extend the
joint formulation of Denis and Baldridge
(2007) using named entity classification and
combine it with the transitivity constraints
(Denis, 2007; Klenner, 2007). Intuitively, we
only should identify antecedents for the men-
tions which are likely to have one (Ng and
Cardie, 2002a), and we should only make a
set of mentions coreferent if they are all in-
stances of the same entity type (eg, person
or location). ilp enables such constraints
to be declared between the outputs of inde-
pendent classifiers to ensure coherent assign-
ments are made. It also leads to global in-
ference via both constraints on named entity
types and transitivity constraints since both
relate multiple pairwise decisions.

We show that this strategy leads to im-
provements across the three main metrics
proposed for coreference: the muc metric
(Vilain et al., 1995), the b3 metric (Bagga
and Baldwin, 1998), and ceaf metric (Luo,
2005). In addition, we contextualize the per-
formance of our system with respect to cas-
cades of multiple models and oracle systems
that assume perfect information (e.g. about
entity types). We furthermore demonstrate

1These were independent, simultaneous develop-
ments.

the inadequacy of using only the muc met-
ric and argue that results should always be
given for all three. We include a simple com-
posite of the three metrics, called mela, for
Mention, Entity, and Link Average score.2

2 Data and evaluation

We use the ACE corpus (Phase 2) for train-
ing and testing. The corpus has three parts:
npaper, nwire, and bnews, and each set is
split into a train part and a devtest part.
The corpus text was preprocessed with the
OpenNLP Toolkit3 (i.e., a sentence detector,
a tokenizer, and a POS tagger). In our ex-
periments, we consider only true ACE men-
tions instead of detecting them; our focus is
on evaluating pairwise local approaches ver-
sus the global ilp approach rather than on
building a full coreference resolution system.

Three primary metrics have been pro-
posed for evaluating coreference perfor-
mance: (i) the link based muc metric (Vi-
lain et al., 1995), (ii) the mention based b3

metric (Bagga and Baldwin, 1998), and (iii)
the entity based ceaf metric (Luo, 2005).
All these metrics compare the set of chains S
produced by a system against the true chains
T , and report performance in terms of recall
and precision. They however differ in how
they computes these scores, and each embeds
a different bias.

The muc metric is the oldest and still
most commonly used. muc operates by de-
termining the number of links (i.e., pairs of
mentions) that are common to S and T . Re-
call is the number of common links divided
by the total number of links in the T ; preci-
sion is the number of common links divided
by the total number of links in S. By focusing
on the links, this metric has two main biases,
which are now well-known (Bagga and Bald-
win, 1998; Luo, 2005) but merit re-emphasis
due its continued use as the sole evaluation
measure. First, it favors systems that create
large chains (hence, fewer entities). For in-
stance, a system that produces a single chain
achieves 100% recall without severe degrada-
tion in precision. Second, it ignores recall for
single mention entities, since no link can be
found in these; however, putting such men-
tions in the wrong chain does hurt precision.4

2Interestingly, mela means “gathering” in San-
skrit, so this acronym seems appropriate.

3Available from opennlp.sf.net.
4It is worth noting that the muc corpus for which
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T = {m1,m3,m5}, {m2}, {m4,m6,m7}
S1 = {m1,m2,m3,m6}, {m4,m5,m7}
S2 = {m1,m2,m3,m4,m5,m6,m7}

Figure 1: Two competiting partitionings for
mention set {m1,m2,m3,m4,m5,m6,m7}.

The b3 metric addresses the muc metric’s
shortcomings, by computing recall and pre-
cision scores for each mention m. Let S be
the system chain containing m, T be the true
chain containing m. The set of correct ele-
ments in S is thus |S ∩ T |. The recall score
for a mention m is thus computed as |S∩T |

|T | ,

while the precision score for m is |S∩T |
|S| . Over-

all recall/precision is obtained by averaging
over the individual mention scores. The fact
that this metric is mention-based by defini-
tion solves the problem of single mention en-
tities. It also does not favor larger chains,
since they will be penalized in the precision
score of each mention.

The Constrained Entity Aligned F-
Measure5 (ceaf) aligns each system chain S
with at most one true chain T . It finds the
best one-to-one mapping between the set of
chains S and T , which is equivalent to finding
the optimal alignment in a bipartite graph.
The best mapping is that which maximizes
the similarity over pairs of chains (Si, Ti),
where the similarity of two chains is the num-
ber of common mentions between them. For
ceaf, recall is the total similarity divided by
the number of mentions in all the T , while
precision is the total similarity divided by
the number of mentions in S. Note that
when true mentions are used, ceaf assigns
the same recall and precision: this is because
the two systems partition the same set of
mentions.

A simple example illustrating how the
metrics operate is presented in Figure 1 (see
Luo (2005) for more examples). T is the set
of true chains, S1 and S2 are the partitions
produced by two hypothetical resolvers. Re-
call, precision, and f -score for these metrics
are given in Table 1.

the metric was devised does not annotate single men-
tion entities. However, the ACE corpus does include
such entities.

5We use the mention-based ceaf measure (Luo,
2005). This is the same metric as ECM-F (Luo et al.,
2004) used by Klenner (2007).

muc b3 ceaf

R P F R P F F
S1 .50 .40 .44 .62 .45 .52 .57
S2 1.0 .66 .79 1.0 .39 .56 .43

Table 1: Recall (R), precision (P), and f -
score (F) using muc, b3, and ceaf for parti-
tionings of Figure 1

The bias of the muc metric for large chains
is shown by the fact that it gives better recall
and precision scores for S2 even though this
partition is completely uninformative. More
intuitively, b3 highly penalizes the precision
of this partition: precision errors are here
computed for each mention. ceaf is the
harshest on S2, and in fact is the only metric
that prefers S1 over S2.

muc is known for being an applicable met-
ric when one is only interested in precision
on pairwise links (Bagga and Baldwin, 1998).
Given that much recent work —including the
present paper— seeks to move beyond sim-
ple pairwise coreference and produce good
entities, it is crucial that they are scored
on the other metrics as well as muc. Most
tellingly, our results show that both b3 and
ceaf scores can show degradation even when
muc appears to show an improvement.

3 Base models

Here we define the three base classifiers
for pairwise coreference, anaphoricity, and
named entity classification. They form the
basis for several cascades and joint inference
with ilp. Like Kehler et al. (2004) and Mor-
ton (2000), we estimate the parameters of
all models using maximum entropy (Berger,
Pietra, and Pietra, 1996); specifically, we
use the limited memory variable metric al-
gorithm (Malouf, 2002).6 Gaussian priors for
the models were optimized on development
data.

3.1 The coreference classifier

Our coreference classifier is based on that
of Soon, Ng, and Lim (2001), though the
features have been extended and are similar
(though not equivalent) to those used by Ng
and Cardie (2002a). Features fall into 3 cat-
egories: (i) features of the anaphor, (ii) fea-
tures of antecedent mention, and (iii) pair-
wise features (i.e., such as distance between

6This algorithm is implemented in Toolkit for Ad-
vanced Discriminative Modeling (tadm.sf.net).
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the two mentions). We omit details here for
brevity (details on the different feature sets
can be found in Denis (2007)); the ilp ap-
proach could be equally well applied to mod-
els using other, extended feature sets such
as those discussed in Denis and Baldridge
(2008) and Bengston and Roth (2008).

Using the coreference classifier on its own
involves: (i) estimating PC(coref|〈i, j〉), the
probability of having a coreferential out-
come given a pair of mentions 〈i, j〉, and
(ii) applying a selection algorithm that picks
one or more mentions out of the candidates
for which PC(coref|〈i, j〉) surpasses a given
threshold (here, .5).

PC(coref|〈i, j〉) =
exp(

n∑
k=1

λkfk(〈i, j〉,coref))

Z(〈i, j〉)

where fk(i, j) is the number of times feature
k occurs for i and j, λk is the weight assigned
to feature k during training, and Z(〈i, j〉) is
a normalization factor over both outcomes
(coref and ¬coref).

Training instances are constructed based
on pairs of mentions of the form 〈i, j〉, where
j and i describe an anaphor and an an-
tecedent candidate, respectively. Each such
pair is assigned a label, either coref or
¬coref, depending on whether or not the
two mentions corefer. We followed the sam-
pling method of Soon, Ng, and Lim (2001)
for creating the training material for each
anaphor: (i) a positive instance for the pair
〈i, j〉 where i is the closest antecedent for j,
and (ii) a negative instance for each pair 〈i, k〉
where k intervenes between i and j.

Once trained, the classifier can be used
to choose pairwise coreference links–and thus
determine the partition of entities–in two
ways. The first is to pick a unique antecedent
with closest-first link-clustering (Soon, Ng,
and Lim, 2001); this is the standard strat-
egy, referred to as COREFclosest. The second
is to simply take all links with probability
above .5, which we refer to as COREFabove .5.
The purpose of including this latter strategy
is primarily to demonstrate an easy way to
improve muc scores that actually degrades
b3 and ceaf scores. This strategy indeed
results in positing significantly larger chains,
since each anaphor is allowed to link to sev-
eral antecedents.

3.2 The anaphoricity classifier

Ng and Cardie (2002a) introduced the use of
an anaphoricity classifier to act as a filter for
coreference resolution to correct errors where
non-anaphoric mentions are mistakenly re-
solved or where anaphoric mentions failed to
be resolved. Their approach produces im-
provements in precision, but larger losses in
recall. Ng (2004) improves recall by opti-
mizing the anaphoricity threshold. By us-
ing joint inference for anaphoricity and coref-
erence, Denis and Baldridge (2007) avoid
cascade-induced errors without the need to
separately optimize the threshold. They re-
alize gains in both recall and precision; how-
ever, they report only muc scores. As we will
show, these improvements do not hold for b3

and ceaf.
The task for the anaphoricity determina-

tion component is the following: one wants
to decide for each mention i in a document
whether i is anaphoric or not. This task can
be performed using a simple classifier with
two outcomes: anaph and ¬anaph. The
classifier estimates the conditional probabil-
ities P (anaph|i) and predicts anaph for i
when P (anaph|i) > .5. The anaphoricity
model is as follows:

PA(anaph|i) =
exp(

n∑
k=1

λkfk(i,anaph))

Z(i)

The features used for the anaphoricity
classifier are quite simple. They include in-
formation regarding (i) the mention itself,
such as the number of words and whether it is
a pronoun, and (ii) properties of the potential
antecedent set, such as whether there is a pre-
vious mention with a matching string. This
classifier achieves 80.8% on the entire ace
corpus (bnews: 80.1, npaper: 82.2, nwire:
80.1).

3.3 The named entity classifier

Named entity classification involves pre-
dicting one of the five ACE class labels.
The set of named entity types T are:
facility, gpe (geo-political entity), location,
organization, person. The classifier es-
timates the conditional probabilities P (t|i)
for each t∈T and predicts the named en-
tity type t̂ for mention i such that t̂ =
argmaxt∈T P (t|i).
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PE(t|i) =
exp(

n∑
k=1

λkfk(i, t))

Z(i)

The features for this model include: (i)
the string of the mention, (ii) features defined
over the string (e.g., capitalization, punctu-
ations, head word), (iii) features describing
the word and POS context around the men-
tion. The classifier achieves 79.5% on the
entire ace corpus (bnews: 79.8, npaper:
73.0, nwire: 72.7).

4 Base model results

This section describes coreference perfor-
mance when the pairwise coreference classi-
fier is used alone with closest-first clustering
(COREFclosest) or with the liberal all-links-
above-.5 clustering (COREFabove .5), or when
COREFclosest is constrained by the anaphoric-
ity and named entity classifiers as filters in
a cascade or by gold-standard information as
filters in oracle systems. The cascades are:

• CASCADEa→c: the anaphoricity classifier
specificies which mentions to resolve

• CASCADEe→c: the named entity classi-
fier specifies which antecedents have the
same type as the mention to be resolved;
others are excluded from consideration

• CASCADEa,e→c: the two classifiers acting
as combined filters

We also provide results for the correspond-
ing oracle systems which have perfect knowl-
edge about anaphoricity and/or named en-
tity types: ORACLEa,c, ORACLEe,c, and ORA-
CLEa,e,c.

Table 2 summarizes the results in terms
of recall (R), precision (P), and f -score (F)
on the three coreference metrics: muc, b3,
and ceaf. The first thing to note is the con-
trast between COREFclosest and COREFabove .5.
Recall that the only difference between the
two clustering strategies is that the latter cre-
ates strictly larger entities than the former by
adding all links above .5. By doing so, it gains
about 10% in R for both muc and b3. How-
ever, whereas muc does not register a drop in
precision, b3 P is 14% lower, which produces
an overall 1% drop in F. ceaf punishes this
strategy even more, with a 3.6% drop. Note
that the resulting composite mela scores are

almost identical. Given the nature of the
two strategies COREFclosest and COREFabove .5,
these differences across metrics strongly sup-
port arguments that muc is too indiscrimi-
nate and can in fact be gamed (knowingly or
not) by simply creating larger chains.

Table 2 also shows that cascades in general
fail to produce significant F improvements
over the pairwise model COREFclosest. These
systems are far behind the performance of
their corresponding oracles. This tendency is
even stronger when both classifiers filter pos-
sible assignments: CASCADEa,e→c does much
worse than COREFclosest on all metrics. In
fact, this system has the lowest F on the
b3 evaluation metric, suggesting that the er-
rors of the two filters accumulate in this case.
In contrast, the corresponding oracle, ORA-
CLEa,e,c, achieves the best results across all
measures. It does so by capitalizing on the
improvements given by the separate oracles.

Furthermore, note that the use of the two
auxiliary models have complementary effects
on the muc and b3 metrics, in both the cas-
cade and the oracle systems. Thus, the use
of the anaphoricity classifier improves recall
(suggesting that some true anaphors get “res-
cued” by this model), while the the use of
the named entity model leads to precision im-
provements (suggesting that this model man-
ages to filter out incorrect candidates that
would have been chosen by the coreference
model). In the case of the oracle systems,
these gains translate in overall F improve-
ments. But, as noted, this is generally not
the case with the cascade systems. Only CAS-
CADEa→c shows significant gains with muc
and ceaf (and not with b3). CASCADEe→c

underperforms in all three metrics. This lat-
ter system indeed shows a large drop in recall,
suggesting that this model filter is overzeal-
ous in filtering true antecedents.

The oracle results suggest that joint mod-
eling could deliver large performance gains
by not falling prey to cascade errors. In the
next section, we build on previous ilp for-
mulations and show such improvements can
indeed be realized.

5 Integer programming
formulations

ilp is an optimization framework for global
inference over the outputs of various base
classifiers (Roth and Yih, 2004). Previous
uses of ilp for nlp tasks include eg. Roth
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System muc b3 ceaf mela
R P F R P F R/P/F F-avg

COREFclosest 60.8 72.6 66.2 62.4 77.7 69.2 62.3 65.9
COREFabove .5 70.3 72.7 71.5 73.2 63.7 68.1 58.7 66.1
CASCADEa→c 64.9 72.3 68.4 65.6 74.1 69.6 63.4 67.1
CASCADEe→c 56.3 75.2 64.4 59.6 82.4 69.2 61.6 65.1
CASCADEa,e→c 61.3 68.8 64.8 62.5 73.8 67.7 61.9 64.8
ORACLEa,c 75.6 75.6 75.6 71.4 70.7 71.1 71.5 72.7
ORACLEe,c 62.5 81.3 70.7 62.9 85.5 72.4 65.2 69.4
ORACLEa,e,c 83.2 83.2 83.2 79.0 78.2 78.6 78.7 80.2

Table 2: Recall (R), precision (P), and f -score (F) using muc, b3, and ceaf on the entire
ace corpus for the basic coreference system, the cascade systems, and the corresponding oracle
systems.

and Yih (2004), Barzilay and Lapata (2006),
and Clarke and Lapata (2006). Here, we pro-
vide several ilp formulations for coreference.
The first formulation ILPc,a is based on De-
nis and Baldridge (2007) and performs joint
inference over the coreference classifier and
the anaphoricity classifier. A second formu-
lation ILPc,e combines the coreference classi-
fier with the named entity classifier. A third
formulation ILPc,a,e combines all three mod-
els together. In each of these joint formu-
lation, a set of consistency constraints mu-
tually constrain the ultimate assignments of
each model. Finally, a fourth formulation
ILPc,a,e|trans adds to ILPc,a,e a set of transi-
tivity constraints (similar to those of Klen-
ner (2007)). These latter constraints ensure
better global coherence between the various
pairwise coreference decisions, hence making
this fourth formulation both a joint and a
global model.

For solving the ilp problem, we use
cplex, a commercial lp solver.7 In practice,
each document is processed to define a dis-
tinct ilp problem that is then submitted to
the solver.

5.1 ILPc,a: anaphoricity-coreference
formulation

The ILPc,a system of Denis and Baldridge
(2007) brings the two decisions of corefer-
ence and anaphoricity together by including
both in a single objective function and en-
forcing consistency constraints on the final
outputs of both tasks. More technically, let
first M denotes the set of mentions, and P
the set of possible coreference links over M:
P = {〈i, j〉|〈i, j〉 ∈ M × M and i < j}.

7http://www.ilog.com/products/cplex/

Each model introduces a set of indicator vari-
ables: (i) coreference variables 〈i, j〉 ∈ 0, 1
depending on whether i and j corefer or
not, and (ii) anaphoricity variables x〈i,j〉 ∈
0, 1 depending on whether j is anaphoric
or not. These variables are associated with
assignment costs that are derived from the
model probabilities pC = PC(coref|i, j)
and pA = PA(anaph|j), respectively. The
cost of commiting to a coreference link is
cC〈i,j〉 = −log(pC) and the complement cost
of choosing not to establish a link is cC〈i,j〉 =
−log(1−pC). Analogously, we define costs on
anaphoricity decisions as cAj = −log(pA) and
cAj = −log(1−pA), the costs associated with
making j anaphoric or not, respectively. The
resulting objective function takes the follow-
ing form:

min
∑
〈i,j〉∈P

cC〈i,j〉 · x〈i,j〉 + cC〈i,j〉 · (1−x〈i,j〉)

+
∑
j∈M

cAj · yj + cAj · (1−yj)

subject to:

x〈i,j〉 ∈ {0, 1} ∀〈i, j〉 ∈ P
yj ∈ {0, 1} ∀j ∈M

The final assignments of x〈i,j〉 and yj vari-
ables are forced to respect the following two
consistency constraints (where Mj is the set
of all mentions preceding mention j in the
document):
Resolve all anaphors: if a mention is
anaphoric (yj=1), it must have at least one
antecedent.

yj ≤
∑

i∈Mj

x〈i,j〉 ∀j ∈M
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Resolve only anaphors: if a pair of men-
tions 〈i, j〉 is coreferent (x〈i,j〉=1), then j is
anaphoric (yj=1).

x〈i,j〉 ≤ yj ∀〈i, j〉 ∈ P

These constraints make sure that the
anaphoricity classifier are not taken on faith
as they were with CASCADEa→c. Instead, we
optimize over consideration of both possibil-
ities in the objective function (relative to the
probability output by the classifier) while en-
suring that the final assignments respect the
signifance of what it is to be anaphoric or
non-anaphoric.

5.2 ILPc,e: entity-coreference
formulation

In this second joint formulation, we combine
coreference decisions with named entity clas-
sification. New indicator variables for the
assignments of this model are introduced,
namely z〈i,j〉, where 〈i, t〉 ∈ M × T . Since
entity classification is not a binary decision,
each assigment variable encode a mention i
and a named entity type t. Each of these
variables have an associated cost cE〈i,t〉, which
is the probability that mention i has type t:
cE〈i,t〉 = −log(PE(t|i)). The objective function
for this formulation is:

min
∑
〈i,j〉∈P

cC〈i,j〉 · x〈i,j〉 + cC〈i,j〉 · (1−x〈i,j〉)

+
∑

〈i,t〉∈M×T

cE〈i,t〉 · z〈i,t〉

subject to:

z〈i,t〉 ∈ {0, 1} ∀〈i, t〉 ∈ M× T∑
i∈M

z〈i,t〉 = 1 ∀i ∈M

The last constraint ensures that each men-
tion is only assigned a unique named entity
type. Consistency between the two models is
ensured with the constraint:
Coreferential mentions have the same
entity type: if i and j are coreferential
(x〈i,j〉=1), they must have the same type
(z〈i,t〉 − z〈j,t〉 = 0):

1− x〈i,j〉 ≥ z〈i,t〉 − z〈j,t〉 ∀〈i, j〉 ∈ P, ∀t ∈ T
1− x〈i,j〉 ≥ z〈j,t〉 − z〈i,t〉 ∀〈i, j〉 ∈ P, ∀t ∈ T

These constraints above make sure that the
coreference decisions (the x values) are in-
formed by the named entity classifier and
vice versa. Furthermore, because these con-
straints ensure like assignments to coreferent
pairs of mentions, they have a “propagating”
effect that makes the overall system global.
Coreference assignments that have low cost
(i.e., high confidence) can influence named
entity assignments (e.g., from a org to a
per). This in turn influences other corefer-
ence assignments involving further mentions
radiating out from one core, highly likely as-
signment.

5.3 ILPc,a,e: anaphoricity-entity-
coreference
formulation

For the third joint model, we combine all
three base models with an objective func-
tion that is the composite of those of ILPc,a

and ILPc,e and incorporate all the constraints
that go with them. By creating a triple joint
model, we get constraints between anaphoric-
ity and named entity classification for free, as
a result of the interaction of the consistency
constraints between anaphoricity and coref-
erence and of those between named entity
and coreference. For example, if a mention
of type t is anaphoric, then there must be at
least one mention of type t preceding it.

5.4 Adding transitivity constraints

The previous formulations relate corefer-
ence decisions to the decisions made by
two auxiliary models in a joint formulation.
In addition one would also like to make
coreference decisions dependent on one an-
other, thus ensuring globally coherent enti-
ties. This is achieved through the use transi-
tivity constraints that relate triples of men-
tions 〈i, j, k〉 ∈ M×M×M, where i < j < k
(Denis, 2007; Klenner, 2007). These con-
straints directly exploit the fact that coref-
erence is an equivalence relation.
Transitivity: if x〈i,j〉 and x〈j,k〉 are corefer-
ential pairs (i.e., x〈i,j〉 = x〈j,k〉 = 1), then so
is x〈i,k〉:

x〈i,k〉 ≥ x〈i,j〉 + x〈j,k〉 − 1 ∀〈i, j, k〉 ∈Mi,j,k

Euclideanity: if x〈i,j〉 and x〈i,k〉 are corefer-
ential pairs (i.e., x〈i,j〉 = x〈i,k〉 = 1), then so
is x〈j,k〉.
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x〈j,k〉 ≥ x〈i,j〉 + x〈i,k〉 − 1 ∀〈i, j, k〉 ∈Mi,j,k

Anti-Euclideanity: if x〈i,k〉 and x〈j,k〉 are
coreferential pairs (i.e., x〈i,k〉 = x〈j,k〉 = 1),
then so is x〈i,j〉:

x〈i,j〉 ≥ x〈i,k〉 + x〈j,k〉 − 1 ∀〈i, j, k〉 ∈Mi,j,k

Enforcing Anti-Euclideanity alone
guarantees that the final assignment will not
produce any “implicit” anaphors: that is, a
configuration wherein x〈j,k〉 = 1, x〈i,k〉 = 1,
and yj = 0. The interaction of this con-
straint with resolve only anaphors indeed
guarantees that such configuration cannot
arise, since all three equalities cannot hold
together. This means that mention j must
be a good match for mention i as well as for
mention k.

Note that one could have one unique tran-
sitivity constraint if we had symmetry in
our model; concretely, capturing symmetry
means: (i) adding a new indicator variable
x〈j,i〉 for each variable x〈i,j〉, and (ii) making
sure x〈j,i〉 agrees with x〈i,j〉.

Enforcing each of these constraints above
means adding 1

6 × n× (n− 1)× (n− 2) con-
straints, for a document containing n men-
tions. This means close to 500, 000 of these
constraints for a document containing just
100 mentions. The inclusion of such a large
set of constraints turned out to be diffi-
cult, causing memory issues with large docu-
ments (some of the ace documents have more
than 250 mentions). Consequently, we in-
vestigated during development various sim-
pler scenarios, such as enforcing these con-
straints for documents that had a relatively
small number of mentions (e.g., 100) or just
using one of these types of constraint (in
particular Anti-Euclideanity given the way
it interacts with the discourse status assign-
ments). In the following, ILPc,a,e|trans will re-
fer to the ILPc,a,e formulation augmented with
the Anti-Euclideanity constraints.

6 ILP Results

Table 3 summarizes the scores for the dif-
ferent ilp systems, along with COREFclosest.
Like Denis and Baldridge (2007), we find that
joint anaphoricity and coreference (ILPc,a)
greatly improves muc F. However, we also
see that this model suffers from the same
problem as COREFabove .5: performance on

the other metrics go down. This is in fact
unsurprising: COREFabove .5 can be viewed as
an unconstrained ilp formulation; similarly,
ILPc,a takes all links above .5 subject to meet-
ing the constraints on anaphoricity. The con-
straining effect of anaphoricity improves muc
R and P and b3 R over COREFabove .5, but not
b3 P nor ceaf. Despite the encouraging muc
scores, more is thus needed.

The next thing to note is that joint named
entity classification and coreference (ILPc,e)
nearly beats COREFclosest across the metrics,
but fails for ceaf. As for ILPc,a, ILPc,e can
also be viewed as constraining COREFabove .5:
in this case, precision is improved (compare
muc: 72.7 to 75.0 and b3: 63.7 to 71.2), while
still retaining over half the gain in recall that
COREFabove .5 obtained over COREFclosest. In
doing so, the degradation in ceaf is just 1%,
compared to ILPc,a’s 3.4%. In addition to im-
proving coreference resolution performance,
this joint formulation also yields a slight im-
provement on the named entity classification:
specifically, accuracy for that task went from
79.5% to over 80.0% using the ILPc,e model.

Joint inference over all three models
(ILPc,a,e) delivers larger improvements for
both muc and b3 without any ceaf degrada-
tion, thus mirroring the improvements found
with the corresponding oracle. In partic-
ular, R is boosted nearly to the level of
COREFabove .5 without the dramatic loss in
P (in fact P is better than COREFclosest for
muc). By adding the Anti-Euclideanity con-
straint to this formulation (ILPc,a,e|trans), we
see the best across-the-metric scores of any
system. For muc and b3, both P and R
are boosted over COREFclosest, and there is
a jump of 4% for ceaf. Both the muc
and ceaf improvements for ILPc,a,e|trans are
in line with the improvements that Klen-
ner (2007) found using transitivity, though
it should be noted that he scored on all men-
tions, not just true mentions as we do here.

The composite mela metric provides an
interesting overall view, showing step-wise
improvements through the addition of the
various models and the global constraints.

These results are in sharp contrast with
those obtained by the cascade model CAS-
CADEa,e→c: recall that this system, while also
using the two auxiliary models as filters was
worse than COREFclosest. The joint ilp formu-
lation is clearly better able to integrate the
extra information provided by the anaphoric-
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System muc b3 ceaf mela
R P F R P F R/P/F F

COREFclosest 60.8 72.6 66.2 62.4 77.7 69.2 62.3 65.9
COREFabove .5 70.3 72.7 71.5 73.2 63.7 68.1 58.7 66.1
ILPc,a 73.2 73.4 73.3 75.3 62.0 68.0 58.9 66.7
ILPc,e 66.2 75.0 70.4 69.6 71.2 70.4 61.2 67.3
ILPc,a,e 69.6 75.4 72.4 72.2 69.7 70.9 62.3 68.5
ILPc,a,e|trans 63.7 77.8 70.1 65.6 81.4 72.7 66.2 69.7

Table 3: Recall (R), precision (P), and f -score (F) using the muc, b3, and ceaf evaluation
metric on the entire ace dataset for the ilp coreference systems.

ity and named entity classifiers. In doing
so, it does not require fine-tuning thresholds,
and it can further benefit from constraints,
such as transitivity.

Further experiments reveal that bringing
the other transitivity constraints into the
ilp formulation results in additional preci-
sion gains, although not in overall F gains.
The effect of these constraints is to withdraw
incoherent links, rather than producing new
links. At the global level, this results in the
creation of smaller, more coherent clusters
of mentions. In some cases, this will lead
to a single entity being split across multi-
ple chains. Switching on these constraints
may therefore be useful for certain applica-
tions where precision is more important than
recall.

Though in general ceaf appears to be the
most discriminating metric, this point brings
up the reason why using ceaf on its own is
not ideal. When one entity is split across two
or more chains, all the links between the men-
tions are indeed correct and will thus be use-
ful for applications like information retrieval.
muc and b3 give points to such assignments,
whereas only the largest of such chains will be
used for ceaf, leaving the others—and their
correct links—out of the score. It is also in-
teresting to consider muc and b3 as they can
be useful for teasing apart the behavior of
different models, for example, with ILPc,a,e

compared to COREFclosest, where ceaf was
the same but the others were different.

There is an interesting point of compar-
ison with our results using rankers rather
than classifiers and using models specialized
to particular types of mentions (Denis and
Baldridge, 2008). This work does not use
ilp, but the best system there, with f -scores
of 71.6, 72.7, and 67.0 for muc, b3, and
ceaf, respectively, actually slightly beats

ILPc,a,e|trans, our best ilp system. This un-
derscores the importance of attending care-
fully to the base classifiers and features used
(see also Bengston and Roth (2008) in this re-
gard). The ilp approach in this paper could
straightforwardly swap in these better base
models. We expect this to lead to further per-
formance improvements, which we intend to
test in future work, as well as testing the per-
formance of these models and methods when
using predicted, rather than gold, mentions.

7 Conclusion

We have shown that joint inference over
coreference, anaphoricity, and named entity
classification using ilp leads to improvements
for all three main coreference metrics: muc,
b3, and ceaf. The fact that b3 and ceaf
scores were also improved is significant: the
ilp formulations tend to construct larger
coreference chains—these are rewarded by
muc without precision penalties, but b3 and
ceaf are not as lenient.

As importantly, we have provided a care-
ful study of cascaded systems, oracle sys-
tems and the joint systems with respect to
all of the metrics. We demonstrated that the
muc metric’s bias for larger chains leads it
to give much higher scores while performance
according to the other metrics actually drops.
Nonetheless, b3 and ceaf also have weak-
nesses; it is thus important to report all of
these scores. We also include the mela score
as a simple at-a-glance composite metric.
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