Ex. 1
To account for the syntax of expressions like the ones in (1-a), the following assumptions are made: a noun phrase is either a proper noun or a noun phrase followed by a conjunction phrase; a conjunction phrase is a coordinating word (a comma or the word and) followed by a noun phrase.

1. Write the grammar G for noun phrases following these assumptions.
2. Provide the two possible derivation trees that G associates with (1-a). Which of these two analyses seem the most appropriate to you?
3. Is G able to offer an analysis for (2)? If not, propose a grammar G^{\prime} which can. Give the corresponding syntactic tree.
4. G generates the variants (3) of the expression (1-a). Propose a grammar $G^{\prime \prime}$ which generates (1-a), as well as (1-b), but excludes these variants. In other words, $G^{\prime \prime}$ would allow at most one occurrence of and, before the last conjunct. Note that it is not asked that $G^{\prime \prime}$ generates the embedded form (2).
(1) a. Paul, Marc and André
b. Paul, Marc, Zoé and André
(2) Paul, Marc and Léa, and Luc
(3) a. Paul, Marc, André
b. Paul and Marc and André

Answer

1. The grammar is explicitely defined in the question: $\mathrm{NP} \longrightarrow \mathrm{PN}$

$$
\mathrm{NP} \quad \longrightarrow \mathrm{NP} \text { ConjP }
$$

$$
\text { ConjP } \longrightarrow \text { Conj NP }
$$

Lexical rules are also needed: PN \longrightarrow Paul \mid Marc \mid André \mid Zoé \mid Luc
Conj \longrightarrow, \mid and
2. The two possible derivation trees are given here:

The second analysis yields a grouping between the first two conjoints which doesn't seem justified either semantically nor syntactically; the best analysis is probably the first one.
3. The answer is no: two coordination symbols follow one another in the sentence, and this is not allowed by the grammar. A minimal modification would be to alter the lexical rules: Conj \longrightarrow, | and \mid, and
The grammar is still offering two syntactic analyses:

4. It was reasonable to assume that the grammar had still to be able to generate a single proper noun. Then when two of more proper nouns were generated, it was possible to interpret the question as requiring exactly one occurrence of and, or as requiring at most one occurrence (possibly none). The version on the left forces every conjunction to end with exactly one occurrence of and ; the version on the right allows for a conjunction with no and (but if there is one, there is only one). In both cases ' Pn ' is the lexical rule for proper nouns.

NP	\longrightarrow	Pn
X	\longrightarrow	X and NP
	$\longrightarrow \mathrm{Pn}$	
	Pn, X	

$$
\begin{array}{lll}
\mathrm{NP} & \longrightarrow & X \\
& \mid & X \text { and } \mathrm{NP} \\
X & \longrightarrow & \mathrm{Pn} \\
& \mid & \mathrm{Pn}, X
\end{array}
$$

Many other versions were possible, depending on the level of lexicalisation, the use of ε-productions, and the choice to depart a lot from the initial version.

Ex. 2
A context-free grammar $G=\langle\Sigma, N, S, P\rangle$ is called simple if it verifies the two following conditions:

- $P \subset N \times \Sigma N^{*}$
- $\forall A \in V, \forall x \in \Sigma, \forall u, u^{\prime} \in(\Sigma \cup N)^{*},(A \rightarrow x u) \in P \wedge\left(A \rightarrow x u^{\prime}\right) \in P \Rightarrow\left(u=u^{\prime}\right)$

In words, (1) right hand side parts of the rules start with a terminal letter, followed by an arbitrary number of non-terminal letters (possibly none), and (2) it's not possible to have two differents rules from the same non-terminal whose right hand side part start with the same (terminal) letter.
A context-free language is a simple language if there exists a simple grammar that generates it.

1. Find a simple grammar for the language $\left\{a^{n} b^{n+1}, n \geq 0\right\}$
2. Find a simple grammar for the language $\left\{a^{n} b^{n}, n>0\right\}$
3. Let L be the language generated by: $S \longrightarrow a S S \mid b$.

Build a context-free grammar that generates the language $L c^{*} d$.
4. Show that the product of two simple languages is a simple language. Provide a rigourous explanation, not necessarily a mathematical proof.

1. The most natural grammar would be $S \rightarrow a S b \mid b$, but it is not simple. Let's introduce a non-terminal symbol whose function will be simply to rewrite into b :

$$
\begin{aligned}
& S \longrightarrow a S B \\
& S \longrightarrow b \\
& B \longrightarrow b
\end{aligned}
$$

2. The most natural grammar would be $S \rightarrow a S b \mid \varepsilon$, but it's not simple (none of the two rules is simple). Instead we may want to propose $S \longrightarrow a S B \mid a B ; B \longrightarrow b$, but even though all of its rules are simple, it's not a simple grammar since two rules from S have the same terminal symbol on the right handside. An additional non-terminal symbol seems necessary:

$$
\begin{aligned}
& S \longrightarrow a X \\
& X \longrightarrow a X B \\
& X \longrightarrow b \\
& B \longrightarrow b
\end{aligned}
$$

3. Quite naturally, the following grammer can be proposed, even though it is not simple (it was not asked): $S_{0} \longrightarrow S X ; S \longrightarrow a S S|b ; X \longrightarrow c X| d$.
However, anticipating the following question, it was also possible to look for a simple grammar (S_{0} is the new axiom in both cases):

$$
\begin{aligned}
& S_{0} \longrightarrow a S S X \\
& S_{0} \longrightarrow b X \\
& S \longrightarrow a S S \\
& S \longrightarrow b \\
& X \longrightarrow c X \\
& X \longrightarrow d
\end{aligned}
$$

4. Let L_{1} and L_{2} be two simple languages, engendered by two simple grammars G_{1} (axiom S_{1}) and G_{2} (axiom S_{2}). We assume (without loss of generality) that the non-terminal alphabets of the two grammars are distinct.
Let $S_{1} \rightarrow u_{1}\left|u_{2}\right| \ldots \mid u_{k}$ be the rules starting from S_{1} in G_{1}.
Then the language $L_{1} L_{2}$ is engendered by a grammar G (axiom S), comprising the rules $S \rightarrow u_{1} S_{2}\left|u_{2} S_{2}\right| \ldots \mid u_{k} S_{2}$, as well as the rules of G_{1} and those of G_{2}.
All the rules from G_{1} and G_{2} have the right form, by hypothesis, and the new rules starting from S also have the right form, since the concatenation of a non-terminal symbol to a rule of the right form remains of the right form.
In addition, the new rules have exactly the same prefixes that initial rules starting from S_{1}, among which the factorisation condition was verified by hypothesis. This condition is thus verified for rules starting from S.
The proposed grammar is therefore simple.
What remains to be done is to prove that the grammar thus defined engenders $L_{1} L_{2}$.
