Ex. 1

Gien the alphabet $X=\{a, b, c\}$, propose a deterministic finite-state automaton (not necessarily complete) which recognizes all the words of X^{*} which contain at least two different letters.

Ex. 2
Consider the following regular grammar:

$$
\begin{aligned}
& S \rightarrow a A \mid b B \\
& B \rightarrow a A|b C| b \\
& A \rightarrow b B|a C| a \\
& C \rightarrow a C|a| b \mid b C
\end{aligned}
$$

1. Build the finite-state automaton corresponding to this grammar (hint: the states of the automaton correspond closely to the non-terminal symbols of the grammar).
2. Show the sequences of states corresponding to the recognition path of the words $a a a, b a b b a$ and babaaaa.
3. Is this automaton deterministic? If not, propose a deterministic finite-state automaton recognizing the same language.
