Homework Assignment On Propositional Logic

Due on November 24, 2020

I leave space between questions to allow you to state your answers consisely.

Exercise 1

For each statement below, say whether it is true or not. You don't need to justify your answer when you say 'true'. When you say 'false', describe a valuation that falsifies the statement.

$$(1) \qquad p \to (q \to (r \to \neg p)), p \land q \vDash \neg r$$

(2)
$$p \to (q \to (r \to \neg q)) \vDash \neg r$$

$$(3) \qquad (p \land q) \lor r, p \vDash q$$

$$(4) \qquad p \lor (q \land \neg r) \vDash r \to p$$

$$(5) \qquad p \to \neg p \vDash \neg p$$

$$(6) \qquad \neg p \to p \vDash \neg p$$

$$(7) \qquad \vDash (\neg p \to p) \to (\neg p \lor q)$$

$$(8) \qquad \vDash (\neg p \to p) \to (p \lor q)$$

Exercise 2

For each of the two formulae below, write a formula that is equivalent to it and whose only connectives are \neg and \lor .

(1)
$$(\neg a \land (b \to c)) \to \neg (\neg b \lor c)$$

(2)
$$(a \lor \neg (b \land c)) \land \neg (d \to (\neg a \land e))$$

Exercise 3

For each statement below, say whether it is true or false. You don't need to justify your answer when you say 'true'. When you say 'false', give a counterexample (pick two sentences ϕ and ψ which falsify the claim).

Remember that a statement of the form A if an only if B means that A cannot be true if B isn't, but also that B cannot be true if A isn't. For instance the arithmetic statement A number is divisible by 4 if and only if it is divisible by 2 is false, because some numbers are divisible by 2 without being divisible by 4.

- (1) A formula of the form $(\phi \lor \psi)$ is satisfiable if and only if ϕ is satisfiable or ψ is satisfiable.
- (2) A formula of the form $(\phi \lor \psi)$ is satisfiable if and only if ϕ is satisfiable and ψ is satisfiable.
- (3) A formula of the form $(\phi \lor \psi)$ is contradictory if and only if ϕ is contradictory or ψ is contradictory.
- (4) A formula of the form $(\phi \lor \psi)$ is contradictory if and only if both ϕ and ψ are contradictory.
- (5) A formula of the form $(\phi \land \psi)$ is satisfiable if and only if both ϕ and ψ are satisfiable.

- (6) A formula of the form $(\phi \land \psi)$ is contradictory if and only if ϕ is contradictory or ψ is contradictory.
- (7) A formula of the form $(\phi \land \psi)$ is contradictory if and only if both ϕ and ψ are contradictory.
- (8) A formula of the form $(\phi \land \psi)$ is a tautology if and only if ϕ is a tautology or ψ is a tautology.
- (9) A formula of the form $(\phi \land \psi)$ is a tautology if and only if both ϕ and ψ are tautologies.

Exercise 4

For each set of formulae below, describe all the valuations that satisfy it (no need to justify your answer).

(1)
$$\{p_1, p_2 \to p_1, p_3 \to (p_2 \to p_1)\}$$

(2)
$$\{\neg p_1, \neg (p_2 \to p_1), \neg (p_3 \to (p_2 \to p_1))\}$$

(3) The following infinite set:

$$\{\neg p_1, \neg (p_2 \to p_1), \neg (p_3 \to (p_2 \to p_1)), \neg (p_4 \to (p_3 \to (p_2 \to p_1))), \ldots, \\ \neg (p_i \to (p_{i-i} \to (\ldots \to (p_2 \to p_1))) \ldots), \ldots\}$$

Exercise 5 - Harder

For this exercise, you will need to use a separate sheet.

We consider a propositional language based on only three atomic sentences p_1 , p_2 and p_3 , and

which has two unary connectives \neg (with its standard semantics) and O (whose semantics is described below), and the standard binary connectives (with their standard semantics) as well as a connective for exclusive disjunction, noted \lor .

To each valuation v we associate the set of atoms that v maps to true, noted pos(v). For instance, if v assigns 1 to p_1 and p_3 and 0 to p_2 , then $pos(v) = \{p_1, p_3\}$.

We now define an ordering relation on valuations by:

 $u \leq v$ if $pos(u) \subseteq pos(v)$

In words: u is 'smaller' than v if every atom that is true in u is also true in v (but possibly v makes true more atoms than u).

The syntax and semantics of O are given by:

- (1) a. If ϕ is a formula, then $O\phi$ is a formula.
 - b. For any sentence ϕ and any valuation v, $v(O\phi) = 1$ if:
 - (i) $v(\phi) = 1$ and
 - (ii) there is no valuation u such that $u(\phi) = 1$ and u < v. (where u < v means $u \le v$ and $u \ne v$)
 - And otherwise $v(O\phi) = 0$
- (2) In words: $O\phi$ is true relative to valuation v if v makes ϕ true, and there is no 'smaller' valuation u that also makes ϕ true. Otherwise it is false.
- 1. Find a formula equivalent to Op_2 in which O does not occur.
- 2. Find a formula equivalent to $O(p_1 \vee p_2)$ in which O does not occur.
- 3. Describe the set of valuations that make $O(p_1 \lor (p_2 \lor p_3))$ true.
- 4. Is any of the following formulae equivalent to $O(p_1 \lor (p_2 \lor p_3))$?
 - (a) $p_1 \stackrel{\vee}{=} (p_2 \stackrel{\vee}{=} p_3)$
 - (b) $p_1 \leq (p_2 \vee p_3)$
 - (c) $p_1 \lor (p_2 \lor p_3)$
 - (d) $p_1 \lor (p_2 \lor p_3)$
- 5. Describe all the valuations that make $O(p_1 \vee (p_2 \wedge p_3))$ true.
- 6. Is $O(p_1 \vee (p_2 \wedge p_3))$ equivalent to $(p_1 \vee (p_2 \wedge p_3))$?
- 7. Is it possible to characterize the meaning of O by means of a truth-table?