Overview

- 1. Base concepts
 - (a) Atomic sentences
 - (b) Quantifiers
- 2. Syntax
 - (a) FOL Language
 - (b) Scope
 - (c) Bound and free variables
 - (d) Sentence vs. wff
- 3. Semantics
 - (a) First order extentional model
 - (b) Truth definition by substitution
 - (c) Truth definition by assignment (Tarski)
- 4. Results
 - (a) Equivalences
 - (b) Meta theoretical results

2. Syntax

(a) First Order Logic Language

- (i) If A is a predicate constant, of arity n, and each $t_1...t_n$ an individual constant or variable, then $A(t_1,...,t_n)$ is a wff.
- (ii) If φ is a wff, then so is $\neg \varphi$.
- (iii) If φ and ψ are wffs, then so are $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$, and $(\varphi \leftrightarrow \psi)$.
- (iv) If φ is a wff and x a variable, then $\forall x \varphi$ and $\exists x \varphi$ are wffs.
- (v) Nothing else is a wff.

(b) Scope

If $\forall x\psi$ is a sub-formula of φ , then ψ is called the **scope** of this occurrence of the quantifier $\forall x$ in φ . Same definition for $\exists x$.

(c) Bound/Free variable

- (a) An occurrence of a variable x in the formula ϕ (which is not part of a quantifer) is called **free** if this occurrence of x is not in the scope of a quantifier $\forall x$ ou $\exists x$ occurring in ϕ .
- (b) If $\forall x \psi$ (or $\exists x \psi$) is a sub-formula of ϕ and x is free in ψ , then this occurrence of x is called **bound** by the quantifier $\forall x$ (or $\exists x$).

(d) Sentence vs wff

A **sentence** is a formula with no free variable.

3. Semantics

(c) Tarskian truth definition

Let $\llbracket \alpha \rrbracket_{\mathcal{M}}^{g}$ be the denotation of α in the model $\mathcal{M} = \langle D, I \rangle$ and with the assignment g. $\llbracket t \rrbracket_{\mathcal{M}}^{g} = I(t)$ if t is an individual constant $\llbracket t \rrbracket_{\mathcal{M}}^{g} = g(t)$ if t is a variable $\llbracket P(t_{1}, ...t_{n}) \rrbracket_{\mathcal{M}}^{g} = 1$ iff $\langle \llbracket t_{1} \rrbracket_{\mathcal{M}}^{g}, ... \llbracket t_{n} \rrbracket_{\mathcal{M}}^{g} \rangle \in I(P)$. If φ and ψ are wfss, $\llbracket \neg \varphi \rrbracket_{\mathcal{M}}^{g} = 1$ iff $\llbracket \varphi \rrbracket_{\mathcal{M}}^{g} = 0$ $\llbracket (\varphi \land \psi) \rrbracket_{\mathcal{M}}^{g} = 1$ iff $\llbracket \varphi \rrbracket_{\mathcal{M}}^{g} = 1$ and $\llbracket \psi \rrbracket_{\mathcal{M}}^{g} = 1$ $\llbracket (\varphi \lor \psi) \rrbracket_{\mathcal{M}}^{g} = 1$ iff $\llbracket \varphi \rrbracket_{\mathcal{M}}^{g} = 1$ or $\llbracket \psi \rrbracket_{\mathcal{M}}^{g} = 1$

$$[[(\varphi \to \psi)]]_{\mathcal{M}}^{g} = 1 \quad \text{iff} \quad [[\varphi]]_{\mathcal{M}}^{g_{\mathcal{M}}} = 0 \quad \text{or} \quad [[\psi]]_{\mathcal{M}}^{g_{\mathcal{M}}} = 1$$

$$[[\exists y \ \varphi]]_{\mathcal{M}}^{g} = 1 \text{ iff there is a } d \in D \text{ s.t. } [[\varphi]]_{\mathcal{M}}^{g[y/d]} = 1$$

similarly,

$$\llbracket \forall y \ \varphi \rrbracket_{\mathcal{M}}^g = 1 \text{ iff for all } d \in D, \ \llbracket \varphi \rrbracket_{\mathcal{M}}^{g[y/d]} = 1$$

Il φ is a sentence :

 $\llbracket \varphi \rrbracket_{\mathcal{M}} = 1$ iff there is an assignment g such that $\llbracket \varphi \rrbracket_{\mathcal{M}}^g = 1$

4. Results

Equivalences

• Bound variables are "dummy" : their name no longer matters.

 $\begin{array}{rcl} \forall x \ Fx &\equiv & \forall y \ Fy \\ But \ beware \ of \ unintended \ captures : \\ \forall x \ (Fx \land Gy) &\not\equiv & \forall y \ (Fy \land Gy) \end{array}$

• Duality rules (de Morgan laws)

 $\begin{array}{rcl} \forall x \ \alpha &\equiv \ \neg \exists \ \neg \alpha \\ & \text{for instance :} \\ \forall x \ Rx &\equiv \ \neg \exists \ \neg Rx \end{array}$ $\begin{array}{rcl} All \ is \ relative &\approx \ Nothing \ is \ absolute \ (\approx \ non \ relative) \\ \forall x \ (Px \rightarrow Kx) &\equiv \ \neg \exists x \ (Px \land \neg Kx) \end{array}$ $\begin{array}{rcl} All \ professors \ are \ kind \ \approx \ There \ are \ no \ non-kind \ professors \ Other \ variants : \end{array}$ $\begin{array}{rcl} \exists x \ \alpha &\equiv \ \neg \forall x \ \neg \alpha \\ \neg \exists x \ \alpha &\equiv \ \forall x \ \neg \alpha \\ \neg \forall x \ \alpha &\equiv \ \exists x \ \neg \alpha \end{array}$

• Distribution rules :

 $\begin{array}{rcl} \forall x \ (\alpha \land \beta) & \equiv & (\forall x \ \alpha \land \forall x \ \beta) \\ All \ is \ rare \ and \ expensive & \approx & All \ is \ rare \ and \ all \ is \ expensive \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & &$

$\exists x \; (\alpha \lor \beta)$	\equiv	$(\exists x \; \alpha \lor \exists x \; \beta)$
But :		
$\exists x \; (\alpha \land \beta)$	≢	$(\exists x \; \alpha \land \exists x \; \beta)$

 $\exists x \; (\alpha \to \beta) \; \equiv \; (\forall x \; \alpha \to \exists x \; \beta)$

• Conditional distribution ($\bar{\beta}$ doesn't contain free occurrences of x)

$$\begin{array}{rcl} \bar{\beta} &\equiv& \forall x\bar{\beta} \\ \bar{\beta} &\equiv& \exists x\bar{\beta} \end{array}$$

$$\begin{array}{rcl} \forall x \ (\alpha \lor \bar{\beta}) &\equiv& (\forall x \ \alpha \lor \bar{\beta}) \\ \exists x \ (\alpha \land \bar{\beta}) &\equiv& \exists x \ \alpha \land \bar{\beta} \\ \forall x \ (\alpha \to \bar{\beta}) &\equiv& \exists x \ \alpha \to \bar{\beta} \end{array}$$
Every entity is such that if it breaks, there is noise $\approx & \text{If some entity breaks, there is noise} \\ \forall x \ (\bar{\beta} \to \alpha) &\equiv& \bar{\beta} \to \forall x \ \alpha \end{array}$
For all person, if there is noise, s/he is upset $\approx & \text{If there is noise, everyone is upset} \end{array}$