Typed λ -calculus 0 0 First fragment

Compositionality

Pascal Amsili

December 2020

Typed λ -calculus

First fragment

Overview

Frege's principle

Typed λ -calculus

Type theory Montague's language

First fragment

Typed λ -calculus 0 0

First fragment

Frege's principle

The meaning of an expression is uniquely determined by the meanings of its parts and their mode of combination.

Motivation : Humbolt's view on finite means for infinite sentences

Typed λ -calculus 0 0

Consequences

- Locality principle : lexical items have a meaning that is independant of the expression they occur in.
- Substitution principle : synonymous expressions may be substituted for each other without changing the meaning of the complex expression in which they occur.
- Parts of well formed sentences have « meaning »
- Meanings can be « composed » : Frege's saturation idea

 $\lambda\text{-terms}$ can represent individual meanings and functional application can represent semantic composition.

Typed λ -calculus

First fragment

Overview

Frege's principle

Typed λ -calculus

Type theory Montague's language

First fragment

Typed λ -calculus \circ

First fragment

Type theory

- 1. *e* is a type
- 2. t is a type
- 3. if a and b are types, then $\langle a, b \rangle$ is a type

Typed λ -calculus \circ

First fragment

Type theory

- 1. e is a type
- 2. t is a type
- 3. if a and b are types, then $\langle a, b \rangle$ is a type

•
$$D_e = A$$

- $D_t = \{0, 1\}$
- $D_{\langle a,b
 angle} =$ the set of mappings from D_a to D_b .

Meaningful expressions

For a, b types :

- variables and individual constants of type a belong to ME_a.
- if $\alpha \in ME_{\langle a,b \rangle}$ and $\beta \in ME_a$ then $(\alpha)\beta \in ME_b$.
- if *u* is a variable of type *a* and $\alpha \in ME_b$, then $\lambda u.\alpha \in ME_{(a,b)}$.
- if φ and ψ are in ME_t , then the following expressions are also in $ME_t : \neg \varphi$, $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$.
- if φ is in ME_t and u is a type a variable, then $\forall u\varphi$ and $\exists u\varphi$ are in ME_t .

Typed λ -calculus

First fragment •0

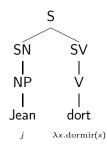
Overview

Frege's principle

yped λ -calculus Type theory

First fragment

Typed λ -calculus 0 0 First fragment ○●



S	\rightarrow	SN	SV
0	\leftarrow	(2)	1
SN	\rightarrow	NP	
0	\leftarrow	1	
SV	\rightarrow	V	
0	\leftarrow	1	
NP	\rightarrow	Jean	
0	\leftarrow	j	
V	\rightarrow	dort	
0	\leftarrow	$\lambda x. \operatorname{dormir}(x)$	