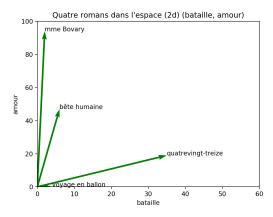
Matrice terme-document

	QuatreVT	Voyage Bal	Bête Hum.	Mme Bovary
	119 Kw	82 kw	128 kw	117 kw
bataille	35	4	6	2
clair	105	26	96	52
facile	12	19	6	10
politique	11	0	9	5
voyage	17	196	94	44
idiot	2	1	2	6
amour	19	0	47	94

Quatrevingt-treize (Hugo) Le voyage en ballon (Verne) La bête humaine (Zola) Mme Bovary (Flaubert)

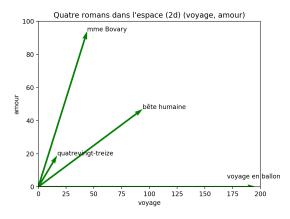
Documents comme vecteurs

	QuatreVT	Voyage Bal	Bête Hum.	Mme Bovary
bataille	35	4	6	2
amour	19	0	47	94



Documents comme vecteurs

	QuatreVT	Voyage Bal	Bête Hum.	Mme Bovary
voyage	17	196	94	44
amour	19	0	47	94



Vecteurs terme-document

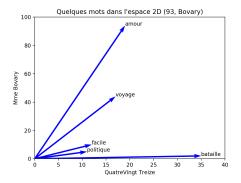
On peut inverser la représentation : les dimensions sont maintenant les documents, les vecteurs permettent de décrire des mots.

	QuatreVT	Voyage Bal	Bête Hum.	Mme Bovary
	119 Kw	82 kw	128 kw	117 kw
bataille	35	4	6	2
clair	105	26	96	52
facile	12	19	6	10
politique	11	0	9	5
voyage	17	196	94	44
idiot	2	1	2	6
amour	19	0	47	94

amour (comme politique)

est le genre de mot qui n'apparaît pas dans "Le voyage en ballon".

On peut visualiser les mots dans l'espace (Quatrevingt-treize, Mme Bovary) :



bataille	(35,2)
politique	(11,5)
amour	(19,94)
voyage	(17,44)

Comptages distributionnels

	arriver	tomber	habiller	mourir
bataille	246	100	2	180
voyage	470	83	4	116
homme	1 819	1 205	339	1 499
femme	890	660	384	1 088

Comptages distributionnels

	arriver	tomber	habiller	mourir	
bataille	246	100	2	180	55 331
voyage	470	83	4	116	208 520
homme	1 819	1 205	339	1 499	668 289
femme	890	660	384	1 088	346 093

Comptages distributionnels (normalisés)

	arriver	tomber	habiller	mourir
bataille	44	18	0	32
voyage	23	4	0	6
homme	27	18	5	22
femme	26	19	11	31

Matrice terme-terme

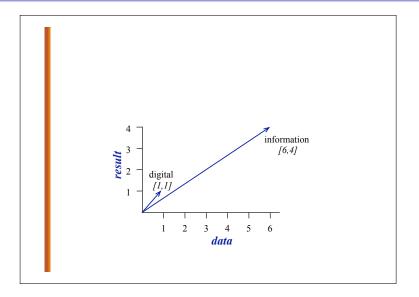
More common: word-word matrix (or "term-context matrix")

Two words are similar in meaning if their context vectors are similar

sugar, a sliced lemon, a tablespoonful of apricot their enjoyment. Cautiously she sampled her first pineapple well suited to programming on the digital computer. for the purpose of gathering data and information necessary for the study authorized in the

iam, a pinch each of. and another fruit whose taste she likened In finding the optimal R-stage policy from

	aardvark	computer	data	pinch	result	sugar	
apricot	0	0	0	1	0	1	
pineapple	0	0	0	1	0	1	
digital	0	2	1	0	1	0	
information	0	1	6	0	4	0	



Reminders from linear algebra
dot-product
$$(\vec{v}, \vec{w}) = \vec{v} \cdot \vec{w} = \sum_{i=1}^{N} v_i w_i = v_1 w_1 + v_2 w_2 + ... + v_N w_N$$

vector length $|\vec{v}| = \sqrt{\sum_{i=1}^{N} v_i^2}$

Cosine for computing similarity

$$\operatorname{cosine}(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}| |\vec{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

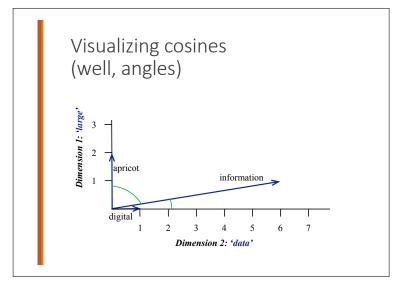
 $\begin{array}{ll} v_i \text{ is the count for word } v \text{ in context } i \\ w_i \text{ is the count for word } w \text{ in context } i. \\ \overrightarrow{a \cdot \vec{b}} = |\vec{a}||\vec{b}|\cos\theta \\ \overrightarrow{cos}(v,w) \text{ is the cosine similarity of } v \text{ and } w \\ \end{array} \begin{array}{l} \vec{a} \cdot \vec{b} \\ \overrightarrow{|\vec{a}||\vec{b}|} = \cos\theta \end{array}$

Cosine as a similarity metric

- -1: vectors point in opposite directions
- +1: vectors point in same directions
- 0: vectors are orthogonal

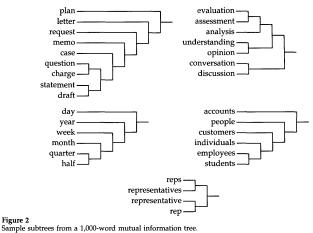
Frequency is non-negative, so cosine range 0-1

		large	data	computer
		1	0	0
$\vec{v} \cdot \vec{w} = \vec{v} \cdot \vec{w}$ $\sum_{i=1}^{N} v_i w_i$	digital	0	1	2
$= \frac{\vec{v} \cdot \vec{w}}{ \vec{v} \vec{w} } = \frac{\vec{v}}{ \vec{v} } \cdot \frac{\vec{w}}{ \vec{w} } = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$	information	1	6	1
e(digital,information) = (apricot,digital) =	$\frac{1+0+0}{\sqrt{1+0+0}\sqrt{1+3}}$ $\frac{0+6+2}{\sqrt{1+36}}$			
$\frac{0+}{\sqrt{1+0+0}}$	$\frac{0+0}{\sqrt{0+1+4}}$	= 0		



Représentations lexicales contextuelles (Smith, 2020)

Exemple : clustering



Source : (Brown et al., 1992)

Sorbonne ;;; Nouvelle ;;;

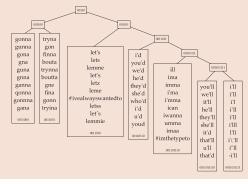
Représentations lexicales contextuelles (Smith, 2020)

Mots comme des vecteurs distributionnels

Exemple : brown clusters sur worpus de tweets

Figure 1. Example Brown clusters.

These were derived from SBM tweets, see Owoputi et al...³⁶ for details. Shown are the 10 most frequent words in clusters in the section of the hierarchy with prefix bit string 00110. Intermediate nodes in the tree correspond to clusters that contain all words in their descendants. Note that differently spelled variants of words tend to cluster together, as do words that acyress similar meanings, including hashtags. The full set of clusters can be explored at http://www.cs.cmu.edu/~ark/TweetNLP/cluster_viewer.html. Note that there are several Unicode characters that are visually similar to the apostrophe, resulting in different strings with similar usage.



Source : (Smith, 2020)

Sorbonne ;;; Nouvelle ;;;