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General introduction

1 Mathematicians (incl. Chomsky) have formalized the notion of
language It might be thought of as an

oversimplification,
always the same story...

2 It buys us:
1 Tools to think about theoretical issues about language/s

(expressiveness, complexity, comparability...)

2 Tools to manipulate concretely language (e.g. with computers)

3 A research programme:

• Represent the syntax of natural language in a fully
unambiguously specified way

Now let’s get familiar with the mathematical notion of language
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Alphabet, word

Def. 1 (Alphabet)
An alphabet ⌃ is a finite set of symbols (letters).
The size of the alphabet is the cardinal of the set.

Def. 2 (Word)
A word on the alphabet ⌃ is a finite sequence of letters from ⌃.
Formally, let [p] = (1, 2, 3, 4, ..., p) (ordered integer sequence).
Then a word is a mapping

u : [p] �! ⌃

p, the length of u, is noted |u|.
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Examples II

Alphabet {0,1,2,3,4,5,6,7,8,9, · }
Words 235 · 29

007 · 12
·1 · 1 · 00 · ·
3 · 1415962 . . . (⇡)
. . .

Alphabet {a, woman, loves, man }
Words a

a woman loves a woman
man man a loves woman loves a
. . .
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Monoid

Def. 3 (⌃⇤)
Let ⌃ be an alphabet.
The set of all the words that can be formed with any number of
letters from ⌃ is noted ⌃⇤

⌃⇤ includes a word with no letter, noted "

Example: ⌃ = {a, b, c}
⌃⇤ = {", a, b, c , aa, ab, ac , ba, . . . , bbb, . . .}

N.B.: ⌃⇤ is always infinite, except. . .

if ⌃ = ;. Then ⌃⇤ = {"}.
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Structure of ⌃⇤

Let k be the size of the alphabet k = |⌃|.

Then ⌃⇤ contains : k0 = 1 word(s) of 0 letters (")
k1 = k word(s) of 1 letters
k2 word(s) of 2 letters
. . .
kn words of n letters, 8n � 0
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Representation of ⌃⇤

⌃ = {a, b, c}
"
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a

�
��

H
HH

aa

�
�
�

H
H

H

aaa aab aac ...

ab ac

b

�
��

H
HH

ba bb bc

c

�
��

H
HH

ca cb cc

Words can be enumerated according to different orders
⌃⇤ is a countable set
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Concatenation

⌃⇤ can be equipped with a binary operation: concatenation

Def. 4 (Concatenation)

Let [p] u�! X , [q] w�! X . The concatenation of u and w , noted
uw (u.w) is thus defined:

uw : [p + q] �! X

uwi =

⇢
ui for i 2 [1, p]
wi�p for i 2 [p + 1, p + q]

Example : u bacba
v cca
uv bacbacca
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Factor

Def. 5 (Factor)
A factor w of u is a subset of adjascent letters in u.
–w is a factor of u , 9u1, u2 s.t. u = u1wu2
–w is a left factor (prefix) of u , 9u2 s.t. u = wu2
–w is a right factor (suffix) of u , 9u1 s.t. u = u1w

Def. 6 (Factorization)
We call factorization the decomposition of a word into factors.
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Role of concatenation

1 Words have been defined on ⌃.
If one takes two such words, it’s always possible to form a new
word by concatenating them.

2 Any word can be factorised in many different ways:
a b a c c a b

3 Since all letters of ⌃ form a word of length 1
(this set of words is called the base),

4 any word of ⌃⇤ can be seen as a (unique) sequence of
concatenations of length 1 words :
a b a c c a b
((((((ab)a)c)c)a)b)
((((((a.b).a).c).c).a).b)
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Properties of concatenation

1 Concatenation is non commutative
2 Concatenation is associative
3 Concatenation has an identity (neutral) element: "

1 uv .w 6= w .uv

2 (u.v).w = u.(v .w)

3 u." = ".u = u
Notation : a.a.a = a3
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Basic concepts
Definition
Problem

Language

Def. 7 ((Formal) Language)
Let ⌃ be an alphabet.
A language on ⌃ is a set of words on ⌃.

or, equivalently,
A language on ⌃ is a subset of ⌃⇤
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Examples I

Let ⌃ = {a, b, c}.

L1 = {aa, ab, bac} finite language

L2 = {a, aa, aaa, aaaa . . .}
or L2 = {ai / i � 1} infinite language

L3 = {"} finite language,

reduced to a singleton

6=
L4 = ; “empty” language

L5 = ⌃⇤
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Examples II

Let ⌃ = {a, man, loves, woman}.

L = { a man loves a woman, a woman loves a man }

Let ⌃0 = {a, man, who, saw, fell}.

L0 =

8
>><

>>:

a man fell,
a man who saw a man fell,
a man who saw a man who saw a man fell,
. . .

9
>>=

>>;
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Set operations

Since a language is a set, usual set operations can be defined:
union
intersection
set difference

) One may describe a (complex) language as the result of set
operations on (simpler) languages:
{a2k / k > 1} = {a, aa, aaa, aaaa, . . .} \ {ww / w 2 ⌃⇤}
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Additional operations

Def. 8 (product operation on languages)
One can define the language product and its closure the Kleene
star operation:

The product of languages is thus defined:
L1.L2 = {uv / u 2 L1 & v 2 L2}

Notation:
k timesz }| {

L.L.L . . . L = Lk ; L0 = {"}
The Kleene star of a language is thus defined:

L⇤ =
S

n>0 L
n
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Regular expressions

It is common to use the 3 rational operations:
union
product
Kleene star

to characterize certain languages...

({a} [ {b})⇤.{c} = {c , ac , abc , bc , . . . , baabaac , . . .}
(simplified notation (a|b)⇤c — regular expressions)

... but not all languages can be thus characterized.
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Back to “Natural” Languages

English as a formal language:
alphabet: morphemes (often simplified to words —depending on

your view on flexional morphology)
) Finite at a time t by hypothesis

words: well formed English sentences
) English sentences are all finite by hypothesis

language: English, as a set of an infinite number of well formed
combinations of “letters” from the alphabet
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Discussion I

1 is the alphabet finite?
closed class morphemes obviously
open class morphemes what about “new words”?

morphological derivations can be seen as
produced from an unchanged
inventory (1)

other words loan words (rare)

lexical inventions (rare)

change of category (2) (bounded)

) negligable

(1) motherese = mother+ese

(2) americanA ! americanN
23 / 111
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Discussion II

2 is English infinite ?
It is supposed that you can always profer a longer sentence

than the previous one by adding linguistic material preserving

well-formedness.

Compatible with the working memory limit

(Langendoen & Postal, 1984)

3 is language discrete ?
Well, that’s another story
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About infinity

Linguists sometimes have trouble with infinity:
In order for there to be an infinite number of sentences in a
language there must either be an infinite number of words
in the language (clearly not true) or there must be the possibility
of infinite length sentences. The product of two finite numbers
is always a finite number. (Mannell, 1999)

and many others

!! WRONG !!

The whole point of formal languages is that they are
::::::
infinite sets

of
::::::
finite words on a

:::::
finite alphabet.

von Humbolt: language is an infinite use of finite means
(quoted by Chomsky)
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Good questions

Why would one consider natural language as a formal language?
it allows to describe the language in a
formal/compact/elegant way
it allows to compare various languages (via classes of
languages established by mathematicians)

it give algorithmic tools to recognize and to analyse words
of a language.

recognize u : decide whether u 2 L
analyse u : show the internal structure of u
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Introduction

Formal grammars have been proposed by Chomsky as one of the
available means to characterize a formal language.
Other means include :

Turing machines (automata)
�-terms
. . .
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Formal grammar

Def. 9 ((Formal) Grammar)
A formal grammar is defined by h⌃,N, S ,Pi where

⌃ is an alphabet
N is a disjoint alphabet (non-terminal vocabulary)
S 2 V is a distinguished element of N, called the axiom
P is a set of « production rules », namely a subset of the
cartesian product (⌃ [ N)⇤N(⌃ [ N)⇤ ⇥ (⌃ [ N)⇤.
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Examples

h⌃,N, S ,Pi

G0 =

*

{joe, sam, sleeps}, {N,V , S}, S ,

8
>><

>>:

9
>>=

>>;

+
}
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h⌃,N, S ,Pi

G0 =

*
{joe, sam, sleeps}, {N,V , S}, S ,

8
>><

>>:

N ! joe
N ! sam
V ! sleeps
S ! N V

9
>>=

>>;

+
}
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Examples (cont’d)

G1 =

*
{jean, dort}, {Np, SN, SV ,V , S}, S ,

8
>>>><

>>>>:

S ! SN SV
SN ! Np
SV ! V
Np ! jean
V ! dort

9
>>>>=

>>>>;

+
}

G2 = h{(, )}, {S}, S , {S �! " | (S)S}i
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Notation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

G3 = h{+, ⇥, (, ), 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {E ,F},E , {. . .}i

G4 = E ! E + T | T ,T ! T ⇥ F | F ,F ! (E ) | a
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Immediate Derivation

Def. 10 (Immediate derivation)
Let G = hX ,V , S ,Pi a grammar, (f , g) 2 (X [ V )⇤ two “words”,
r 2 P a production rule, such that r : A �! u (u 2 (X [ V )⇤).

• f derives into g (immediate derivation) with the rule r
(noted f

r�! g) iff
9v ,w s.t. f = vAw and g = vuw

• f derives into g (immediate derivation) in the grammar G
(noted f

G�! g) iff
9r 2 P s.t. f

r�! g .
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Derivation

Def. 11 (Derivation)

f
G⇤�! g if f = g or

9f0, f1, f2, ..., fn s.t. f0 = f
fn = g

8i 2 [1, n] : fi�1
G�! fi

An example with G0:
N V joe N

�! sam V joe N �! sam V joe joe or
sam V joe sam or
sam sleeps joe N or
. . .
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Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E

�! F ⇥ E �! 3 ⇥ E �! 3 ⇥ (E ) �! 3 ⇥ (E + E ) �!
3 ⇥ (E + F ) �! 3 ⇥ (E + 4) �! 3 ⇥ (F + 4) �! 3 ⇥ (5+ 4) �!|
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Engendered language

Def. 12 (Language engendered by a word)
Let f 2 (⌃ [ N)⇤.
LG(f ) = {g 2 X ⇤/f

G⇤�! g}

Def. 13 (Language engendered by a grammar)
The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

For instance () 2 LG2 : S ! (S)S ! ()S ! ()
as well as ((())), ()()(), ((()()())). . .
but )()( 62 LG2 , even though the following is a licit derivation :
)S( ! )(S)S( ! )()S( ! )()(
for there is no way to arrive at )S( starting with S .
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Example

G4 = E ! E + T | T ,T ! T ⇥ F | F ,F ! (E ) | a

a+ a, a+ (a ⇥ a), ...
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Proto-word

Def. 14 (Proto-word)
A proto-word (or proto-sentence) is a word on (⌃ [ N)⇤N(⌃ [ N)⇤

(that is, a word containing at least one letter of N) produced by a
derivation from the axiom.

E ! E + T ! E + T ⇤ F ! T + T ⇤ F ! T + F ⇤ F !
T + a ⇤ F ! F + a ⇤ F ! a+ a ⇤ F !///////////a+ a ⇤ a
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Multiple derivations

A given word may have several derivations:
E ! E + E ! F + E ! F + F ! 3 + F ! 3 + 4

E ! E + E ! E + F ! E + 4 ! F + 4 ! 3 + 4
... but if the grammar is not ambiguous, there is only one left
derivation:
E ! E + E ! F + E ! 3 + E ! 3 + F ! 3 + 4

parsing : trying to find the/a left derivation (resp. right)
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Derivation tree

For context-free languages, there is a way to represent the set of
equivalent derivations, via a derivation tree which shows all the
derivation independantly of their order.

Grammar G2: S �! "
| (S)S

S

⇣
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⇣
⇣
⇣
⇣
⇣⇣

�

�
�

@

@
@

P
P

P
P

P
P

PP

( S
⇣
⇣
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��@@ P
P

PP

( S

"

) S

"

) S

"

S ! (S)S ! ((S)S)S ! ((S)S) ! ((S)) ! (())
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Structural analysis

Syntactic trees are precious to give access to the semantics
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Ambiguity

When a grammar can assign more than one derivation tree to a
word w 2 L(G ) (or more than one left derivation), the grammar is
ambiguous.
For instance, G3 is ambiguous, since it can assign the two follwing
trees to 1 + 2 ⇥ 3:
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About ambiguity

Ambiguity is not desirable for the semantics
Useful artificial languages are rarely ambiguous
There are context-free languages that are intrinsequely
ambiguous (3)
Natural languages are notoriously ambiguous...

(3) {anbambapbaq|(n > q ^ m > p) _ (n > m ^ p > q)}
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Comparison of grammars

different languages generated ) different grammars
same language generated by G and G0:

) same weak generative power
same language generated by G and G0,
and same structural decomposition :

) same strong generative power
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