
Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Formal Languages and Linguistics

Pascal Amsili

Sorbonne Nouvelle, Lattice (CNRS/ENS-PSL)

Cogmaster, september 2020

1 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

General introduction

1 Mathematicians (incl. Chomsky) have formalized the notion of
language It might be thought of as an

oversimplification,
always the same story...

2 It buys us:
1 Tools to think about theoretical issues about language/s

(expressiveness, complexity, comparability...)

2 Tools to manipulate concretely language (e.g. with computers)

3 A research programme:

• Represent the syntax of natural language in a fully
unambiguously specified way

Now let’s get familiar with the mathematical notion of language

2 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Overview

1 Formal Languages
Basic concepts
Definition
Problem

2 Formal Grammars

3 Regular Languages

4 Formal complexity of Natural Languages

3 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Alphabet, word

Def. 1 (Alphabet)
An alphabet ⌃ is a finite set of symbols (letters).
The size of the alphabet is the cardinal of the set.

Def. 2 (Word)
A word on the alphabet ⌃ is a finite sequence of letters from ⌃.
Formally, let [p] = (1, 2, 3, 4, ..., p) (ordered integer sequence).
Then a word is a mapping

u : [p] �! ⌃

p, the length of u, is noted |u|.

4 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Examples I
Alphabet { , }
Words

. . .

Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Examples I
Alphabet { , }
Words

. . .
Alphabet { , , , , , . . . }
Words

. . .

5 / 1115 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Examples II

Alphabet {0,1,2,3,4,5,6,7,8,9, · }
Words 235 · 29

007 · 12
·1 · 1 · 00 · ·
3 · 1415962 . . . (⇡)
. . .

Alphabet {a, woman, loves, man }
Words a

a woman loves a woman
man man a loves woman loves a
. . .

6 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Monoid

Def. 3 (⌃⇤)
Let ⌃ be an alphabet.
The set of all the words that can be formed with any number of
letters from ⌃ is noted ⌃⇤

⌃⇤ includes a word with no letter, noted "

Example: ⌃ = {a, b, c}
⌃⇤ = {", a, b, c , aa, ab, ac , ba, . . . , bbb, . . .}

N.B.: ⌃⇤ is always infinite, except. . .

if ⌃ = ;. Then ⌃⇤ = {"}.

7 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Monoid

Def. 3 (⌃⇤)
Let ⌃ be an alphabet.
The set of all the words that can be formed with any number of
letters from ⌃ is noted ⌃⇤

⌃⇤ includes a word with no letter, noted "

Example: ⌃ = {a, b, c}
⌃⇤ = {", a, b, c , aa, ab, ac , ba, . . . , bbb, . . .}

N.B.: ⌃⇤ is always infinite, except. . .
if ⌃ = ;. Then ⌃⇤ = {"}.

7 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Structure of ⌃⇤

Let k be the size of the alphabet k = |⌃|.

Then ⌃⇤ contains : k0 = 1 word(s) of 0 letters (")
k1 = k word(s) of 1 letters
k2 word(s) of 2 letters
. . .
kn words of n letters, 8n � 0

8 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Representation of ⌃⇤

⌃ = {a, b, c}
"

�
�
�
�
�
�
�

H
H

H
H

H
H

H

a

�
��

H
HH

aa

�
�
�

H
H

H

aaa aab aac ...

ab ac

b

�
��

H
HH

ba bb bc

c

�
��

H
HH

ca cb cc

Words can be enumerated according to different orders
⌃⇤ is a countable set

9 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Concatenation

⌃⇤ can be equipped with a binary operation: concatenation

Def. 4 (Concatenation)

Let [p] u�! X , [q] w�! X . The concatenation of u and w , noted
uw (u.w) is thus defined:

uw : [p + q] �! X

uwi =

⇢
ui for i 2 [1, p]
wi�p for i 2 [p + 1, p + q]

Example : u bacba
v cca
uv bacbacca

10 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Concatenation

⌃⇤ can be equipped with a binary operation: concatenation

Def. 4 (Concatenation)

Let [p] u�! X , [q] w�! X . The concatenation of u and w , noted
uw (u.w) is thus defined:

uw : [p + q] �! X

uwi =

⇢
ui for i 2 [1, p]
wi�p for i 2 [p + 1, p + q]

Example : u bacba
v cca

uv bacbacca

10 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Concatenation

⌃⇤ can be equipped with a binary operation: concatenation

Def. 4 (Concatenation)

Let [p] u�! X , [q] w�! X . The concatenation of u and w , noted
uw (u.w) is thus defined:

uw : [p + q] �! X

uwi =

⇢
ui for i 2 [1, p]
wi�p for i 2 [p + 1, p + q]

Example : u bacba
v cca
uv bacbacca

10 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Factor

Def. 5 (Factor)
A factor w of u is a subset of adjascent letters in u.
–w is a factor of u , 9u1, u2 s.t. u = u1wu2
–w is a left factor (prefix) of u , 9u2 s.t. u = wu2
–w is a right factor (suffix) of u , 9u1 s.t. u = u1w

Def. 6 (Factorization)
We call factorization the decomposition of a word into factors.

11 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Role of concatenation

1 Words have been defined on ⌃.
If one takes two such words, it’s always possible to form a new
word by concatenating them.

2 Any word can be factorised in many different ways:
a b a c c a b

3 Since all letters of ⌃ form a word of length 1
(this set of words is called the base),

4 any word of ⌃⇤ can be seen as a (unique) sequence of
concatenations of length 1 words :
a b a c c a b
((((((ab)a)c)c)a)b)
((((((a.b).a).c).c).a).b)

12 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Role of concatenation

1 Words have been defined on ⌃.
If one takes two such words, it’s always possible to form a new
word by concatenating them.

2 Any word can be factorised in many different ways:
a b a c c a b
(a b a)(c c a b)

3 Since all letters of ⌃ form a word of length 1
(this set of words is called the base),

4 any word of ⌃⇤ can be seen as a (unique) sequence of
concatenations of length 1 words :
a b a c c a b
((((((ab)a)c)c)a)b)
((((((a.b).a).c).c).a).b)

12 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Role of concatenation

1 Words have been defined on ⌃.
If one takes two such words, it’s always possible to form a new
word by concatenating them.

2 Any word can be factorised in many different ways:
a b a c c a b
(a b)(a c c)(a b)

3 Since all letters of ⌃ form a word of length 1
(this set of words is called the base),

4 any word of ⌃⇤ can be seen as a (unique) sequence of
concatenations of length 1 words :
a b a c c a b
((((((ab)a)c)c)a)b)
((((((a.b).a).c).c).a).b)

12 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Role of concatenation

1 Words have been defined on ⌃.
If one takes two such words, it’s always possible to form a new
word by concatenating them.

2 Any word can be factorised in many different ways:
a b a c c a b
(a b a c c)(a b)

3 Since all letters of ⌃ form a word of length 1
(this set of words is called the base),

4 any word of ⌃⇤ can be seen as a (unique) sequence of
concatenations of length 1 words :
a b a c c a b
((((((ab)a)c)c)a)b)
((((((a.b).a).c).c).a).b)

12 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Role of concatenation

1 Words have been defined on ⌃.
If one takes two such words, it’s always possible to form a new
word by concatenating them.

2 Any word can be factorised in many different ways:
a b a c c a b
(a)(b)(a)(c)(c)(a)(b)

3 Since all letters of ⌃ form a word of length 1
(this set of words is called the base),

4 any word of ⌃⇤ can be seen as a (unique) sequence of
concatenations of length 1 words :
a b a c c a b
((((((ab)a)c)c)a)b)
((((((a.b).a).c).c).a).b)

12 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Role of concatenation

1 Words have been defined on ⌃.
If one takes two such words, it’s always possible to form a new
word by concatenating them.

2 Any word can be factorised in many different ways:
a b a c c a b
(a)(b)(a)(c)(c)(a)(b)

3 Since all letters of ⌃ form a word of length 1
(this set of words is called the base),

4 any word of ⌃⇤ can be seen as a (unique) sequence of
concatenations of length 1 words :
a b a c c a b
((((((ab)a)c)c)a)b)
((((((a.b).a).c).c).a).b)

12 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Properties of concatenation

1 Concatenation is non commutative
2 Concatenation is associative
3 Concatenation has an identity (neutral) element: "

1 uv .w 6= w .uv

2 (u.v).w = u.(v .w)

3 u." = ".u = u
Notation : a.a.a = a3

13 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Overview

1 Formal Languages
Basic concepts
Definition
Problem

2 Formal Grammars

3 Regular Languages

4 Formal complexity of Natural Languages

14 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Language

Def. 7 ((Formal) Language)
Let ⌃ be an alphabet.
A language on ⌃ is a set of words on ⌃.

or, equivalently,
A language on ⌃ is a subset of ⌃⇤

15 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Language

Def. 7 ((Formal) Language)
Let ⌃ be an alphabet.
A language on ⌃ is a set of words on ⌃.
or, equivalently,
A language on ⌃ is a subset of ⌃⇤

15 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Examples I

Let ⌃ = {a, b, c}.

L1 = {aa, ab, bac} finite language

L2 = {a, aa, aaa, aaaa . . .}
or L2 = {ai / i � 1} infinite language

L3 = {"} finite language,

reduced to a singleton

6=
L4 = ; “empty” language

L5 = ⌃⇤

16 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Examples I

Let ⌃ = {a, b, c}.

L1 = {aa, ab, bac} finite language

L2 = {a, aa, aaa, aaaa . . .}
or L2 = {ai / i � 1} infinite language

L3 = {"} finite language,

reduced to a singleton

6=
L4 = ; “empty” language

L5 = ⌃⇤

16 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Examples I

Let ⌃ = {a, b, c}.

L1 = {aa, ab, bac} finite language

L2 = {a, aa, aaa, aaaa . . .}

or L2 = {ai / i � 1} infinite language

L3 = {"} finite language,

reduced to a singleton

6=
L4 = ; “empty” language

L5 = ⌃⇤

16 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Examples I

Let ⌃ = {a, b, c}.

L1 = {aa, ab, bac} finite language

L2 = {a, aa, aaa, aaaa . . .}
or L2 = {ai / i � 1} infinite language

L3 = {"} finite language,

reduced to a singleton

6=
L4 = ; “empty” language

L5 = ⌃⇤

16 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Examples I

Let ⌃ = {a, b, c}.

L1 = {aa, ab, bac} finite language

L2 = {a, aa, aaa, aaaa . . .}
or L2 = {ai / i � 1} infinite language

L3 = {"} finite language,

reduced to a singleton

6=
L4 = ; “empty” language

L5 = ⌃⇤

16 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Examples I

Let ⌃ = {a, b, c}.

L1 = {aa, ab, bac} finite language

L2 = {a, aa, aaa, aaaa . . .}
or L2 = {ai / i � 1} infinite language

L3 = {"} finite language,

reduced to a singleton

6=

L4 = ; “empty” language

L5 = ⌃⇤

16 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Examples I

Let ⌃ = {a, b, c}.

L1 = {aa, ab, bac} finite language

L2 = {a, aa, aaa, aaaa . . .}
or L2 = {ai / i � 1} infinite language

L3 = {"} finite language,

reduced to a singleton

6=
L4 = ; “empty” language

L5 = ⌃⇤

16 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Examples I

Let ⌃ = {a, b, c}.

L1 = {aa, ab, bac} finite language

L2 = {a, aa, aaa, aaaa . . .}
or L2 = {ai / i � 1} infinite language

L3 = {"} finite language,

reduced to a singleton

6=
L4 = ; “empty” language

L5 = ⌃⇤

16 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Examples II

Let ⌃ = {a, man, loves, woman}.

L = { a man loves a woman, a woman loves a man }

Let ⌃0 = {a, man, who, saw, fell}.

L0 =

8
>><

>>:

a man fell,
a man who saw a man fell,
a man who saw a man who saw a man fell,
. . .

9
>>=

>>;

17 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Examples II

Let ⌃ = {a, man, loves, woman}.

L = { a man loves a woman, a woman loves a man }

Let ⌃0 = {a, man, who, saw, fell}.

L0 =

8
>><

>>:

a man fell,
a man who saw a man fell,
a man who saw a man who saw a man fell,
. . .

9
>>=

>>;

17 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Examples II

Let ⌃ = {a, man, loves, woman}.

L = { a man loves a woman, a woman loves a man }

Let ⌃0 = {a, man, who, saw, fell}.

L0 =

8
>><

>>:

a man fell,
a man who saw a man fell,
a man who saw a man who saw a man fell,
. . .

9
>>=

>>;

17 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Examples II

Let ⌃ = {a, man, loves, woman}.

L = { a man loves a woman, a woman loves a man }

Let ⌃0 = {a, man, who, saw, fell}.

L0 =

8
>><

>>:

a man fell,
a man who saw a man fell,
a man who saw a man who saw a man fell,
. . .

9
>>=

>>;

17 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Set operations

Since a language is a set, usual set operations can be defined:
union
intersection
set difference

) One may describe a (complex) language as the result of set
operations on (simpler) languages:
{a2k / k > 1} = {a, aa, aaa, aaaa, . . .} \ {ww / w 2 ⌃⇤}

18 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Set operations

Since a language is a set, usual set operations can be defined:
union
intersection
set difference

) One may describe a (complex) language as the result of set
operations on (simpler) languages:
{a2k / k > 1} = {a, aa, aaa, aaaa, . . .} \ {ww / w 2 ⌃⇤}

18 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Additional operations

Def. 8 (product operation on languages)
One can define the language product and its closure the Kleene
star operation:

The product of languages is thus defined:
L1.L2 = {uv / u 2 L1 & v 2 L2}

Notation:
k timesz }| {

L.L.L . . . L = Lk ; L0 = {"}
The Kleene star of a language is thus defined:

L⇤ =
S

n>0 L
n

19 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Regular expressions

It is common to use the 3 rational operations:
union
product
Kleene star

to characterize certain languages...

({a} [ {b})⇤.{c} = {c , ac , abc , bc , . . . , baabaac , . . .}
(simplified notation (a|b)⇤c — regular expressions)

... but not all languages can be thus characterized.

20 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Regular expressions

It is common to use the 3 rational operations:
union
product
Kleene star

to characterize certain languages...

({a} [ {b})⇤.{c} = {c , ac , abc , bc , . . . , baabaac , . . .}
(simplified notation (a|b)⇤c — regular expressions)

... but not all languages can be thus characterized.

20 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Regular expressions

It is common to use the 3 rational operations:
union
product
Kleene star

to characterize certain languages...

({a} [ {b})⇤.{c} = {c , ac , abc , bc , . . . , baabaac , . . .}
(simplified notation (a|b)⇤c — regular expressions)

... but not all languages can be thus characterized.

20 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Overview

1 Formal Languages
Basic concepts
Definition
Problem

2 Formal Grammars

3 Regular Languages

4 Formal complexity of Natural Languages

21 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Back to “Natural” Languages

English as a formal language:
alphabet: morphemes (often simplified to words —depending on

your view on flexional morphology)
) Finite at a time t by hypothesis

words: well formed English sentences
) English sentences are all finite by hypothesis

language: English, as a set of an infinite number of well formed
combinations of “letters” from the alphabet

22 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Discussion I

1 is the alphabet finite?
closed class morphemes obviously
open class morphemes what about “new words”?

morphological derivations can be seen as
produced from an unchanged
inventory (1)

other words loan words (rare)

lexical inventions (rare)

change of category (2) (bounded)

) negligable

(1) motherese = mother+ese

(2) americanA ! americanN
23 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Discussion II

2 is English infinite ?
It is supposed that you can always profer a longer sentence

than the previous one by adding linguistic material preserving

well-formedness.

Compatible with the working memory limit

(Langendoen & Postal, 1984)

3 is language discrete ?
Well, that’s another story

24 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

About infinity

Linguists sometimes have trouble with infinity:
In order for there to be an infinite number of sentences in a
language there must either be an infinite number of words
in the language (clearly not true) or there must be the possibility
of infinite length sentences. The product of two finite numbers
is always a finite number. (Mannell, 1999)

and many others

!! WRONG !!

The whole point of formal languages is that they are
::::::
infinite sets

of
::::::
finite words on a

:::::
finite alphabet.

von Humbolt: language is an infinite use of finite means
(quoted by Chomsky)

25 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

About infinity

Linguists sometimes have trouble with infinity:
In order for there to be an infinite number of sentences in a
language there must either be an infinite number of words
in the language (clearly not true) or there must be the possibility
of infinite length sentences. The product of two finite numbers
is always a finite number. (Mannell, 1999)

and many others
!! WRONG !!

The whole point of formal languages is that they are
::::::
infinite sets

of
::::::
finite words on a

:::::
finite alphabet.

von Humbolt: language is an infinite use of finite means
(quoted by Chomsky)

25 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

About infinity

Linguists sometimes have trouble with infinity:
In order for there to be an infinite number of sentences in a
language there must either be an infinite number of words
in the language (clearly not true) or there must be the possibility
of infinite length sentences. The product of two finite numbers
is always a finite number. (Mannell, 1999)

and many others
!! WRONG !!

The whole point of formal languages is that they are
::::::
infinite sets

of
::::::
finite words on a

:::::
finite alphabet.

von Humbolt: language is an infinite use of finite means
(quoted by Chomsky)

25 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

About infinity

Linguists sometimes have trouble with infinity:
In order for there to be an infinite number of sentences in a
language there must either be an infinite number of words
in the language (clearly not true) or there must be the possibility
of infinite length sentences. The product of two finite numbers
is always a finite number. (Mannell, 1999)

and many others
!! WRONG !!

The whole point of formal languages is that they are
::::::
infinite sets

of
::::::
finite words on a

:::::
finite alphabet.

von Humbolt: language is an infinite use of finite means
(quoted by Chomsky)

25 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Good questions

Why would one consider natural language as a formal language?
it allows to describe the language in a
formal/compact/elegant way
it allows to compare various languages (via classes of
languages established by mathematicians)

it give algorithmic tools to recognize and to analyse words
of a language.

recognize u : decide whether u 2 L
analyse u : show the internal structure of u

26 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Overview

1 Formal Languages

2 Formal Grammars
Definition
Language classes

3 Regular Languages

4 Formal complexity of Natural Languages

27 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Introduction

Formal grammars have been proposed by Chomsky as one of the
available means to characterize a formal language.
Other means include :

Turing machines (automata)
�-terms
. . .

28 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Formal grammar

Def. 9 ((Formal) Grammar)
A formal grammar is defined by h⌃,N, S ,Pi where

⌃ is an alphabet
N is a disjoint alphabet (non-terminal vocabulary)
S 2 V is a distinguished element of N, called the axiom
P is a set of « production rules », namely a subset of the
cartesian product (⌃ [ N)⇤N(⌃ [ N)⇤ ⇥ (⌃ [ N)⇤.

29 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Examples

h⌃,N, S ,Pi

G0 =

*

{joe, sam, sleeps}, {N,V , S}, S ,

8
>><

>>:

9
>>=

>>;

+
}

30 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Examples

h⌃,N, S ,Pi

G0 =

*
{joe, sam, sleeps},

{N,V , S}, S ,

8
>><

>>:

9
>>=

>>;

+
}

30 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Examples

h⌃,N, S ,Pi

G0 =

*
{joe, sam, sleeps}, {N,V , S},

S ,

8
>><

>>:

9
>>=

>>;

+
}

30 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Examples

h⌃,N, S ,Pi

G0 =

*
{joe, sam, sleeps}, {N,V , S}, S ,

8
>><

>>:

9
>>=

>>;

+
}

30 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Examples

h⌃,N, S ,Pi

G0 =

*
{joe, sam, sleeps}, {N,V , S}, S ,

8
>><

>>:

(N, joe)
(N, sam)
(V , sleeps)
(S ,N V )

9
>>=

>>;

+
}

30 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Examples

h⌃,N, S ,Pi

G0 =

*
{joe, sam, sleeps}, {N,V , S}, S ,

8
>><

>>:

N ! joe
N ! sam
V ! sleeps
S ! N V

9
>>=

>>;

+
}

30 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Examples (cont’d)

G1 =

*
{jean, dort}, {Np, SN, SV ,V , S}, S ,

8
>>>><

>>>>:

S ! SN SV
SN ! Np
SV ! V
Np ! jean
V ! dort

9
>>>>=

>>>>;

+
}

G2 = h{(, )}, {S}, S , {S �! " | (S)S}i

31 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Notation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

G3 = h{+, ⇥, (, ), 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {E ,F},E , {. . .}i

G4 = E ! E + T | T ,T ! T ⇥ F | F ,F ! (E ) | a

32 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Notation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
G3 = h{+, ⇥, (, ), 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {E ,F},E , {. . .}i

G4 = E ! E + T | T ,T ! T ⇥ F | F ,F ! (E ) | a

32 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Notation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
G3 = h{+, ⇥, (, ), 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {E ,F},E , {. . .}i

G4 = E ! E + T | T ,T ! T ⇥ F | F ,F ! (E ) | a

32 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Immediate Derivation

Def. 10 (Immediate derivation)
Let G = hX ,V , S ,Pi a grammar, (f , g) 2 (X [ V )⇤ two “words”,
r 2 P a production rule, such that r : A �! u (u 2 (X [ V )⇤).

• f derives into g (immediate derivation) with the rule r
(noted f

r�! g) iff
9v ,w s.t. f = vAw and g = vuw

• f derives into g (immediate derivation) in the grammar G
(noted f

G�! g) iff
9r 2 P s.t. f

r�! g .

33 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Derivation

Def. 11 (Derivation)

f
G⇤�! g if f = g or

9f0, f1, f2, ..., fn s.t. f0 = f
fn = g

8i 2 [1, n] : fi�1
G�! fi

An example with G0:
N V joe N

�! sam V joe N �! sam V joe joe or
sam V joe sam or
sam sleeps joe N or
. . .

34 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Derivation

Def. 11 (Derivation)

f
G⇤�! g if f = g or

9f0, f1, f2, ..., fn s.t. f0 = f
fn = g

8i 2 [1, n] : fi�1
G�! fi

An example with G0:
N V joe N �! sam V joe N

�! sam V joe joe or
sam V joe sam or
sam sleeps joe N or
. . .

34 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Derivation

Def. 11 (Derivation)

f
G⇤�! g if f = g or

9f0, f1, f2, ..., fn s.t. f0 = f
fn = g

8i 2 [1, n] : fi�1
G�! fi

An example with G0:
N V joe N �! sam V joe N �! sam V joe joe or

sam V joe sam or
sam sleeps joe N or
. . .

34 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Derivation

Def. 11 (Derivation)

f
G⇤�! g if f = g or

9f0, f1, f2, ..., fn s.t. f0 = f
fn = g

8i 2 [1, n] : fi�1
G�! fi

An example with G0:
N V joe N �! sam V joe N �! sam V joe joe or

sam V joe sam or

sam sleeps joe N or
. . .

34 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Derivation

Def. 11 (Derivation)

f
G⇤�! g if f = g or

9f0, f1, f2, ..., fn s.t. f0 = f
fn = g

8i 2 [1, n] : fi�1
G�! fi

An example with G0:
N V joe N �! sam V joe N �! sam V joe joe or

sam V joe sam or
sam sleeps joe N or
. . .

34 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E

�! F ⇥ E �! 3 ⇥ E �! 3 ⇥ (E ) �! 3 ⇥ (E + E ) �!
3 ⇥ (E + F ) �! 3 ⇥ (E + 4) �! 3 ⇥ (F + 4) �! 3 ⇥ (5+ 4) �!|

35 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E �! F ⇥ E

�! 3 ⇥ E �! 3 ⇥ (E ) �! 3 ⇥ (E + E ) �!
3 ⇥ (E + F ) �! 3 ⇥ (E + 4) �! 3 ⇥ (F + 4) �! 3 ⇥ (5+ 4) �!|

35 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E �! F ⇥ E �! 3 ⇥ E

�! 3 ⇥ (E ) �! 3 ⇥ (E + E ) �!
3 ⇥ (E + F ) �! 3 ⇥ (E + 4) �! 3 ⇥ (F + 4) �! 3 ⇥ (5+ 4) �!|

35 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E �! F ⇥ E �! 3 ⇥ E �! 3 ⇥ (E )

�! 3 ⇥ (E + E ) �!
3 ⇥ (E + F ) �! 3 ⇥ (E + 4) �! 3 ⇥ (F + 4) �! 3 ⇥ (5+ 4) �!|

35 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E �! F ⇥ E �! 3 ⇥ E �! 3 ⇥ (E ) �! 3 ⇥ (E + E )

�!
3 ⇥ (E + F ) �! 3 ⇥ (E + 4) �! 3 ⇥ (F + 4) �! 3 ⇥ (5+ 4) �!|

35 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E �! F ⇥ E �! 3 ⇥ E �! 3 ⇥ (E ) �! 3 ⇥ (E + E ) �!
3 ⇥ (E + F )

�! 3 ⇥ (E + 4) �! 3 ⇥ (F + 4) �! 3 ⇥ (5+ 4) �!|

35 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E �! F ⇥ E �! 3 ⇥ E �! 3 ⇥ (E ) �! 3 ⇥ (E + E ) �!
3 ⇥ (E + F ) �! 3 ⇥ (E + 4)

�! 3 ⇥ (F + 4) �! 3 ⇥ (5+ 4) �!|

35 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E �! F ⇥ E �! 3 ⇥ E �! 3 ⇥ (E ) �! 3 ⇥ (E + E ) �!
3 ⇥ (E + F ) �! 3 ⇥ (E + 4) �! 3 ⇥ (F + 4)

�! 3 ⇥ (5+ 4) �!|

35 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E �! F ⇥ E �! 3 ⇥ E �! 3 ⇥ (E ) �! 3 ⇥ (E + E ) �!
3 ⇥ (E + F ) �! 3 ⇥ (E + 4) �! 3 ⇥ (F + 4) �! 3 ⇥ (5+ 4)

�!|

35 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E �! F ⇥ E �! 3 ⇥ E �! 3 ⇥ (E ) �! 3 ⇥ (E + E ) �!
3 ⇥ (E + F ) �! 3 ⇥ (E + 4) �! 3 ⇥ (F + 4) �! 3 ⇥ (5+ 4) �!|

35 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Engendered language

Def. 12 (Language engendered by a word)
Let f 2 (⌃ [ N)⇤.
LG(f ) = {g 2 X ⇤/f

G⇤�! g}

Def. 13 (Language engendered by a grammar)
The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

For instance () 2 LG2 : S ! (S)S ! ()S ! ()
as well as ((())), ()()(), ((()()())). . .
but )()( 62 LG2 , even though the following is a licit derivation :
)S( ! )(S)S( ! )()S( ! )()(
for there is no way to arrive at )S( starting with S .

36 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Engendered language

Def. 12 (Language engendered by a word)
Let f 2 (⌃ [ N)⇤.
LG(f ) = {g 2 X ⇤/f

G⇤�! g}

Def. 13 (Language engendered by a grammar)
The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

For instance () 2 LG2 :

S ! (S)S ! ()S ! ()
as well as ((())), ()()(), ((()()())). . .
but )()( 62 LG2 , even though the following is a licit derivation :
)S( ! )(S)S( ! )()S( ! )()(
for there is no way to arrive at )S( starting with S .

36 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Engendered language

Def. 12 (Language engendered by a word)
Let f 2 (⌃ [ N)⇤.
LG(f ) = {g 2 X ⇤/f

G⇤�! g}

Def. 13 (Language engendered by a grammar)
The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

For instance () 2 LG2 : S ! (S)S

! ()S ! ()
as well as ((())), ()()(), ((()()())). . .
but )()( 62 LG2 , even though the following is a licit derivation :
)S( ! )(S)S( ! )()S( ! )()(
for there is no way to arrive at )S( starting with S .

36 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Engendered language

Def. 12 (Language engendered by a word)
Let f 2 (⌃ [ N)⇤.
LG(f ) = {g 2 X ⇤/f

G⇤�! g}

Def. 13 (Language engendered by a grammar)
The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

For instance () 2 LG2 : S ! (S)S ! ()S

! ()
as well as ((())), ()()(), ((()()())). . .
but )()( 62 LG2 , even though the following is a licit derivation :
)S( ! )(S)S( ! )()S( ! )()(
for there is no way to arrive at )S( starting with S .

36 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Engendered language

Def. 12 (Language engendered by a word)
Let f 2 (⌃ [ N)⇤.
LG(f ) = {g 2 X ⇤/f

G⇤�! g}

Def. 13 (Language engendered by a grammar)
The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

For instance () 2 LG2 : S ! (S)S ! ()S ! ()

as well as ((())), ()()(), ((()()())). . .
but )()( 62 LG2 , even though the following is a licit derivation :
)S( ! )(S)S( ! )()S( ! )()(
for there is no way to arrive at )S( starting with S .

36 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Engendered language

Def. 12 (Language engendered by a word)
Let f 2 (⌃ [ N)⇤.
LG(f ) = {g 2 X ⇤/f

G⇤�! g}

Def. 13 (Language engendered by a grammar)
The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

For instance () 2 LG2 : S ! (S)S ! ()S ! ()
as well as ((())), ()()(), ((()()())). . .

but )()( 62 LG2 , even though the following is a licit derivation :
)S( ! )(S)S( ! )()S( ! )()(
for there is no way to arrive at )S( starting with S .

36 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Engendered language

Def. 12 (Language engendered by a word)
Let f 2 (⌃ [ N)⇤.
LG(f ) = {g 2 X ⇤/f

G⇤�! g}

Def. 13 (Language engendered by a grammar)
The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

For instance () 2 LG2 : S ! (S)S ! ()S ! ()
as well as ((())), ()()(), ((()()())). . .
but )()( 62 LG2 , even though the following is a licit derivation :

)S( ! )(S)S( ! )()S( ! )()(
for there is no way to arrive at )S( starting with S .

36 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Engendered language

Def. 12 (Language engendered by a word)
Let f 2 (⌃ [ N)⇤.
LG(f ) = {g 2 X ⇤/f

G⇤�! g}

Def. 13 (Language engendered by a grammar)
The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

For instance () 2 LG2 : S ! (S)S ! ()S ! ()
as well as ((())), ()()(), ((()()())). . .
but )()( 62 LG2 , even though the following is a licit derivation :
)S( !

)(S)S( ! )()S( ! )()(
for there is no way to arrive at )S( starting with S .

36 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Engendered language

Def. 12 (Language engendered by a word)
Let f 2 (⌃ [ N)⇤.
LG(f ) = {g 2 X ⇤/f

G⇤�! g}

Def. 13 (Language engendered by a grammar)
The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

For instance () 2 LG2 : S ! (S)S ! ()S ! ()
as well as ((())), ()()(), ((()()())). . .
but )()( 62 LG2 , even though the following is a licit derivation :
)S( ! )(S)S( !

)()S( ! )()(
for there is no way to arrive at )S( starting with S .

36 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Engendered language

Def. 12 (Language engendered by a word)
Let f 2 (⌃ [ N)⇤.
LG(f ) = {g 2 X ⇤/f

G⇤�! g}

Def. 13 (Language engendered by a grammar)
The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

For instance () 2 LG2 : S ! (S)S ! ()S ! ()
as well as ((())), ()()(), ((()()())). . .
but )()( 62 LG2 , even though the following is a licit derivation :
)S( ! )(S)S( ! )()S( !

)()(
for there is no way to arrive at )S( starting with S .

36 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Engendered language

Def. 12 (Language engendered by a word)
Let f 2 (⌃ [ N)⇤.
LG(f ) = {g 2 X ⇤/f

G⇤�! g}

Def. 13 (Language engendered by a grammar)
The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

For instance () 2 LG2 : S ! (S)S ! ()S ! ()
as well as ((())), ()()(), ((()()())). . .
but )()( 62 LG2 , even though the following is a licit derivation :
)S( ! )(S)S( ! )()S( ! )()(

for there is no way to arrive at )S( starting with S .

36 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Engendered language

Def. 12 (Language engendered by a word)
Let f 2 (⌃ [ N)⇤.
LG(f ) = {g 2 X ⇤/f

G⇤�! g}

Def. 13 (Language engendered by a grammar)
The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

For instance () 2 LG2 : S ! (S)S ! ()S ! ()
as well as ((())), ()()(), ((()()())). . .
but )()( 62 LG2 , even though the following is a licit derivation :
)S( ! )(S)S( ! )()S( ! )()(
for there is no way to arrive at )S( starting with S .

36 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Example

G4 = E ! E + T | T ,T ! T ⇥ F | F ,F ! (E ) | a

a+ a, a+ (a ⇥ a), ...

37 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Proto-word

Def. 14 (Proto-word)
A proto-word (or proto-sentence) is a word on (⌃ [ N)⇤N(⌃ [ N)⇤

(that is, a word containing at least one letter of N) produced by a
derivation from the axiom.

E ! E + T ! E + T ⇤ F ! T + T ⇤ F ! T + F ⇤ F !
T + a ⇤ F ! F + a ⇤ F ! a+ a ⇤ F !///////////a+ a ⇤ a

38 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Multiple derivations

A given word may have several derivations:
E ! E + E ! F + E ! F + F ! 3 + F ! 3 + 4

E ! E + E ! E + F ! E + 4 ! F + 4 ! 3 + 4
... but if the grammar is not ambiguous, there is only one left
derivation:
E ! E + E ! F + E ! 3 + E ! 3 + F ! 3 + 4

parsing : trying to find the/a left derivation (resp. right)

39 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Multiple derivations

A given word may have several derivations:
E ! E + E ! F + E ! F + F ! 3 + F ! 3 + 4
E ! E + E ! E + F ! E + 4 ! F + 4 ! 3 + 4

... but if the grammar is not ambiguous, there is only one left
derivation:
E ! E + E ! F + E ! 3 + E ! 3 + F ! 3 + 4

parsing : trying to find the/a left derivation (resp. right)

39 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Multiple derivations

A given word may have several derivations:
E ! E + E ! F + E ! F + F ! 3 + F ! 3 + 4
E ! E + E ! E + F ! E + 4 ! F + 4 ! 3 + 4
... but if the grammar is not ambiguous, there is only one left
derivation:

E ! E + E ! F + E ! 3 + E ! 3 + F ! 3 + 4

parsing : trying to find the/a left derivation (resp. right)

39 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Multiple derivations

A given word may have several derivations:
E ! E + E ! F + E ! F + F ! 3 + F ! 3 + 4
E ! E + E ! E + F ! E + 4 ! F + 4 ! 3 + 4
... but if the grammar is not ambiguous, there is only one left
derivation:
E ! E + E ! F + E ! 3 + E ! 3 + F ! 3 + 4

parsing : trying to find the/a left derivation (resp. right)

39 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Multiple derivations

A given word may have several derivations:
E ! E + E ! F + E ! F + F ! 3 + F ! 3 + 4
E ! E + E ! E + F ! E + 4 ! F + 4 ! 3 + 4
... but if the grammar is not ambiguous, there is only one left
derivation:
E ! E + E ! F + E ! 3 + E ! 3 + F ! 3 + 4

parsing : trying to find the/a left derivation (resp. right)

39 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Derivation tree

For context-free languages, there is a way to represent the set of
equivalent derivations, via a derivation tree which shows all the
derivation independantly of their order.

Grammar G2: S �! "
| (S)S

S

⇣
⇣

⇣
⇣
⇣
⇣
⇣⇣

�

�
�

@

@
@

P
P

P
P

P
P

PP

( S
⇣
⇣
⇣⇣

��@@ P
P

PP

( S

"

) S

"

) S

"

S ! (S)S ! ((S)S)S ! ((S)S) ! ((S)) ! (())

40 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Structural analysis

Syntactic trees are precious to give access to the semantics

E

�
�

�
�

H
H

H
H

E

T

F

a

+ T

�
�

H
H

T

F

a

⇤ F

a

41 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Ambiguity

When a grammar can assign more than one derivation tree to a
word w 2 L(G ) (or more than one left derivation), the grammar is
ambiguous.
For instance, G3 is ambiguous, since it can assign the two follwing
trees to 1 + 2 ⇥ 3:

E

�
�
�

��

H
H

H
HH

E

F

1

+ E

�
��

H
HH

E

F

2

⇥ E

F

3

E

�
�
�
��

H
H

H
HH

E

�
��

H
HH

E

F

1

+ E

F

2

⇥ E

F

3

42 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

About ambiguity

Ambiguity is not desirable for the semantics
Useful artificial languages are rarely ambiguous
There are context-free languages that are intrinsequely
ambiguous (3)
Natural languages are notoriously ambiguous...

(3) {anbambapbaq|(n > q ^ m > p) _ (n > m ^ p > q)}

43 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Definition
Language classes

Comparison of grammars

different languages generated ) different grammars
same language generated by G and G0:

) same weak generative power
same language generated by G and G0,
and same structural decomposition :

) same strong generative power

44 / 111



Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

References I

Bar-Hillel, Yehoshua, Perles, Micha, & Shamir, Eliahu. 1961. On formal properties of simple phrase
structure grammars. STUF-Language Typology and Universals, 14(1-4), 143–172.

Chomsky, Noam. 1957. Syntactic Structures. Den Haag: Mouton & Co.

Gazdar, Gerald, & Pullum, Geoffrey K. 1985 (May). Computationally Relevant Properties of Natural
Languages and Their Grammars. Tech. rept. Center for the Study of Language and Information,
Leland Stanford Junior University.

Gibson, Edward, & Thomas, James. 1997. The Complexity of Nested Structures in English: Evidence
for the Syntactic Prediction Locality Theory of Linguistic Complexity. Unpublished manuscript,
Massachusetts Institute of Technology.

Joshi, Aravind K. 1985. Tree Adjoining Grammars: How Much Context-Sensitivity is Required to
Provide Reasonable Structural Descriptions? Tech. rept. Department of Computer and Information
Science, University of Pennsylvania.

Langendoen, D Terence, & Postal, Paul Martin. 1984. The vastness of natural languages. Basil
Blackwell Oxford.

Mannell, Robert. 1999. Infinite number of sentences. part of a set of class notes on the Internet.
http://clas.mq.edu.au/speech/infinite_sentences/.

Schieber, Stuart M. 1985. Evidence against the Context-Freeness of Natural Language. Linguistics and
Philosophy, 8(3), 333–343.

Stabler, Edward P. 2011. Computational perspectives on minimalism. Oxford handbook of linguistic
minimalism, 617–643.

111 / 111

http://clas.mq.edu.au/speech/infinite_sentences/

	Formal Languages
	Basic concepts

	Formal Grammars
	Regular Languages
	Formal complexity of Natural Languages
	References

