Formal Languages and Linguistics

Pascal Amsili

Sorbonne Nouvelle, Lattice (CNRS/ENS-PSL)
Cogmaster, september 2020

Exercises I

(1) Let g be the grammar $S \rightarrow S a$ $S \rightarrow a$
Describe informally the language of this grammar.
(2) Propose a grammar that generates words composed of any number of as followed by exactly one b.
(3) Remember that Dyck language is engendered by the grammar

$$
S \rightarrow(S)
$$

$$
S \rightarrow \varepsilon
$$

Give a grammar such that evry word has exactly two ending parenthesis for every opening parenthesis, while remaining well balanced.
(4) Give a grammar such that evry word has as many opening parenthesis than closing parenthesis.

Exercises II

(6) Modify the grammar $E \rightarrow E+E ; E \rightarrow 1|2| 3$ in such a way that 《 $(2+3)+1$ » is part of its language.
(6) Show that the grammar $E \rightarrow E+E ; E \rightarrow E \times E ; E \rightarrow 1|2| 3$ is ambiguous.
(0) Show that the grammar
$E \rightarrow E+T|T, T \rightarrow T \times F| F, F \rightarrow(E) \mid a$ is not ambiguous.
(8) Give a contex-free grammar that generates each of the following languages (alphabet $\Sigma=\{a, b, c\}$).

- $L_{0}=\left\{w \in X^{*} / w=a^{n} ; n \geq 0\right\}$
- $L_{0}^{\prime}=\left\{w \in X^{*} / w=a^{n} b^{n} c a ; n \geq 0\right\}$
- $L_{1}=\left\{w \in X^{*} / w=a^{n} b^{n} c^{p} ; n>0\right.$ et $\left.p>0\right\}$
- $L_{2}=\left\{w \in X^{*} / w=a^{n} b^{n} a^{m} b^{m} ; n, m \geq 1\right\}$

Exercises III

$$
\begin{aligned}
& \text { - }\left.L_{3}^{\prime}=\left\{w \in X^{*} /|w|_{a}=\mid w\right]_{b}\right\} \\
& \text { - }\left.L_{3}=\left\{w \in X^{*} /|w|_{a}=2 \mid w\right]_{b}\right\} \\
& \text { - } L_{4}=\left\{w \in X^{*} / \exists x \in X^{*} \text { tq } w=x \bar{x}\right\} \\
& \text { - } L_{5}=\left\{w \in X^{*} / w=\bar{w}\right\}
\end{aligned}
$$

(0) For each of the following grammars, give the generated language, and the type they have in Chomsky's hierarchy.

$$
\begin{aligned}
& S \rightarrow S_{1} S_{2} \\
& S_{1} \rightarrow a S_{1} b \mid a b \\
& S_{2} \rightarrow c S_{2} \mid c
\end{aligned}
$$

