Formal Languages Formal Grammars Regular Languages Formal complexity of Natural Languages References

Formal Languages and Linguistics

Pascal Amsili

Sorbonne Nouvelle, Lattice (CNRS/ENS-PSL)

Cogmaster, september 2020

Mathematical concepts:

Alphabet

Mathematical concepts:

- Alphabet
- Words concatenation

Mathematical concepts:

- Alphabet
- Words concatenation
- Language

Mathematical concepts:

- Alphabet
- Words concatenation
- Language

How to define a language ?

Extensionaly

Mathematical concepts:

- Alphabet
- Words concatenation
- Language

- Extensionaly
- Intensionaly

Mathematical concepts:

- Alphabet
- Words concatenation
- Language

- Extensionaly
- Intensionaly
 - Outcome of a series of set operations

Mathematical concepts:

- Alphabet
- Words concatenation
- Language

- Extensionaly
- Intensionaly
 - Outcome of a series of set operations regular expressions

Mathematical concepts:

- Alphabet
- Words concatenation
- Language

- Extensionaly
- Intensionaly
 - Outcome of a series of set operations regular expressions
 - By means of a formal grammar

Mathematical concepts:

- Alphabet
- Words concatenation
- Language

- Extensionaly
- Intensionaly
 - Outcome of a series of set operations regular expressions
 - By means of a formal grammar
 - By means of a (Turing) machine
 - . . .

Formal grammars

rewriting systems

$$\alpha\beta\gamma\longrightarrow\alpha\beta'\gamma$$
 iff the production rule $\beta\to\beta'$ is in the grammar

where $\alpha, \beta, \gamma, \beta'$ are arbitrary sequences of terminal and non terminal letters.

 engendered language : set of all (terminal) words derived from the axiom

$$\mathcal{G}: E \to E + E; E \to 1 \mid 2 \mid 3$$

 $\mathcal{L}_{\mathcal{G}} = \{1; 2; 3; 1 + 1; 1 + 2; 1 + 1 + 1; \ldots\}$