Formal Languages and Linguistics

Pascal Amsili

Sorbonne Nouvelle, Lattice (CNRS/ENS-PSL)
Cogmaster, september 2020

Overview

(1) Formal Languages
(2) Formal Grammars
(3) Regular Languages

- Definition
- Automata
- Properties

4 Formal complexity of Natural Languages

Definition

3 possible definitions
(1) a regular language can be generated by a regular grammar
(2) a regular language can be defined by rational expressions
(3) a regular language can be recognized by a finite automaton

Def. 15 (Rational Language)

A rational language on Σ is a subset of Σ^{*} inductively defined thus:

- \emptyset and $\{\varepsilon\}$ are rational languages ;
- for all $a \in X$, the singleton $\{a\}$ is a rational language ;
- for all g and h rational, the sets $g \cup h, g . h$ and g^{*} are rational languages.

Overview

(1) Formal Languages
(2) Formal Grammars
(3) Regular Languages

- Definition
- Automata
- Properties

4 Formal complexity of Natural Languages

Formal Languages

Metaphoric definition

Formal definition

Def. 16 (Finite deterministic automaton (FDA))

A finite state deterministic automaton \mathcal{A} is defined by:

$$
\mathcal{A}=\left\langle Q, \Sigma, q_{0}, F, \delta\right\rangle
$$

Q is a finite set of states
Σ is an alphabet
q_{0} is a distinguished state, the initial state,
F is a subset of Q, whose members are called final/terminal states
δ is a mapping fonction from $Q \times \Sigma$ to Q. Notation $\delta(q, a)=r$.

Example

Let us consider the (finite) language $\{a a, a b, a b b, a c b a, a c c b\}$. The following automaton recognizes this langage: $\left\langle Q, \Sigma, q_{0}, F, \delta\right\rangle$, avec $Q=\{1,2,3,4,5,6,7\}, \Sigma=\{a, b, c\}, q_{0}=1, F=\{3,4\}$, and δ is thus defined:

$$
\begin{aligned}
\left.\delta: \quad \begin{array}{rl}
(1, \mathrm{a}) & \mapsto 2 \\
(2, \mathrm{a}) & \mapsto 3 \\
(2, \mathrm{~b}) & \mapsto 4 \\
(2, \mathrm{c}) & \mapsto 5 \\
(4, \mathrm{~b}) & \mapsto 3 \\
(5, \mathrm{~b}) & \mapsto 6 \\
(5, \mathrm{c}) & \mapsto 7 \\
(6, \mathrm{a}) & \mapsto 3 \\
(7, \mathrm{~b}) & \mapsto 3
\end{array}, \begin{array}{l}
\end{array}\right)
\end{aligned}
$$

	a	b	c
$\rightarrow 1$	2		
2	3	4	5
$\leftarrow 3$			
$\leftarrow 4$		3	
5		6	7
6	3		
7		3	

Recognition

Recognition is defined as the existence of a sequence of states defined in the following way. Such a sequence is called a path in the automaton.

Def. 17 (Recognition)

A word $a_{1} a_{2} \ldots a_{n}$ is recognized/accepted by an automaton iff there exists a sequence $k_{0}, k_{1}, \ldots, k_{n}$ of states such that:

$$
\begin{aligned}
& k_{0}=q_{0} \\
& k_{n} \in F \\
& \forall i \in[1, n], \quad \delta\left(k_{i-1}, a_{i}\right)=k_{i}
\end{aligned}
$$

Formal Languages

Example

Sorbonne YFY
Nouvelle FFY

Exercices

Let $\Sigma=\{a, b, c\}$. Give deterministic finite state automata that accept the following languages:
(1) The set of words with an even length.
(2) The set of words where the number of occurrences of b is divisible by 3 .
(3) The set of words ending with $a b$.
(9) The set of words not ending with a b.
(3) The set of words non empty not ending with a b.
(0) The set of words comprising at least a b.
((The set of words comprising at most a b.
(8) The set of words comprising exactly one b.

Formal Languages

Answers

Overview

(1) Formal Languages
(2) Formal Grammars
(3) Regular Languages

- Definition
- Automata
- Properties

4 Formal complexity of Natural Languages

Pumping lemma: Intuition

Take an automaton with k states.

Pumping lemma: Intuition

Take an automaton with k states. If the accepted language is infinite, then some words have more than k letters.

Pumping lemma: Intuition

Take an automaton with k states.
If the accepted language is infinite, then some words have more than k letters.
Therefore, at least one state has to be "gone through" several times.

Pumping lemma: Intuition

Take an automaton with k states.
If the accepted language is infinite, then some words have more than k letters.
Therefore, at least one state has to be "gone through" several times. That means there is a loop on that state.

Pumping lemma: Intuition

Take an automaton with k states.
If the accepted language is infinite, then some words have more than k letters.
Therefore, at least one state has to be "gone through" several times.
That means there is a loop on that state.
Then making any number of loops will end up with a word in L .
\Rightarrow Pumping lemma

Formal Languages

Pumping lemma: definition

Def. 18 (Pumping Lemma)

Let L be an infinite regular language.
There exists an integer k such that:

$$
\forall x \in L,|x|>k, \exists u, v, w \text { such that } x=u v w, \text { with: }
$$

(i) $|v| \geq 1$
(ii) $|u v| \leq k$
(iii) $\forall i \geq 0, u v^{i} w \in L$

Pumping lemma: Illustration

Let's illustrate the lemma with a language which trivialy satisfies it: $a^{*} b c$.
Let $k=3$, the work $a b c$ is long enough, and can be decomposed:

$$
\frac{\varepsilon}{u} \frac{a}{v} \frac{b c}{w}
$$

The three properties of the lemma are satisfied:

- $|v| \geq 1(v=a)$
- $|u v| \leq k(u v=a)$
- $\forall i \in \mathbb{N}, u v^{i} w\left(=a^{i} b c\right)$ belongs to the language by definition.

Pumping lemma: Consequences

The pumping lemma is a tool to prove that a language is not regular.

\mathcal{L} regular	\Rightarrow	pumping lemma $\left(\forall i, u v^{i} w \in \mathcal{L}\right)$
pumping lemma	\nRightarrow	\mathcal{L} regular
NO pumping lemma	\Rightarrow	\mathcal{L} NOT regular

Pumping lemma: Consequences

The pumping lemma is a tool to prove that a language is not regular.

\mathcal{L} regular	\Rightarrow	pumping lemma $\left(\forall i, u v^{i} w \in \mathcal{L}\right)$
pumping lemma	\nRightarrow	\mathcal{L} regular
NO pumping lemma	\Rightarrow	\mathcal{L} NOT regular

to prove that \mathcal{L} is
regular provide an automaton
not regular show that the pumping lemma does not apply

Pumping lemma: Consequences

Def. 19 (Consequences)

Let \mathcal{A} be a k state automaton:
(1) $L(\mathcal{A}) \neq \emptyset$ iff \mathcal{A} recognises (at least) one word u s.t. $|u|<k$.
(2) $L(\mathcal{A})$ is infinite iff \mathcal{A} recognises (at least) one word u t.q. $k \leq|u|<2 k$.

Closure

Regular languages are closed under various operations: if the languages L and L^{\prime} are regular, so are:

- $L \cup L^{\prime}$ (union); L. L' (product); L^{*} (Kleene star)
(rational operations)
- $L \cap L^{\prime}$ (intersection); \bar{L} (complement)
- ...

Formal Languages

Rational operations

Formal Languages

Definition

Union of regular languages: an example

Intersection of regular languages

Algorithmic proof
Deterministic complete automata

L_{1}	a	b
$\rightarrow 1$	2	4
2	4	3
$\leftarrow 3$	3	3
4	4	4

L_{2}	a	b
$\leftrightarrow 1$	2	5
2	5	3
3	4	5
4	1	4
5	5	5

$L_{1} \cap L_{2}$	a	b
$\rightarrow(1,1)$	$(2,2)$	$(4,5)$
$(2,2)$	$(4,5)$	$(3,3)$
$(4,5)$	$(4,5)$	$(4,5)$
$(3,3)$	$(3,4)$	$(3,5)$
$(3,4)$	$(3,1)$	$(3,4)$
$\leftarrow(3,1)$	$(3,2)$	$(3,4)$
$(3,2)$	$(3,4)$	$(3,3)$
$(3,5)$	$(3,5)$	$(3,5)$

Formal Languages

Complement of a regular language

Deterministic complete automata
completed

complemented

Results: expressivity

- Any finite langage is regular
- $a^{n} b^{m}$ is regular
- $a^{n} b^{n}$ is not regular
- $w w^{R}$ is not regular (${ }^{R}$: reverse word)

Decidable problems

- The "word problem" $w \stackrel{?}{\in} L(\mathcal{A})$ is decidable.
$\Rightarrow \mathrm{A}$ computation on an automaton always stops.

Decidable problems

- The "word problem" $w \stackrel{?}{\in} L(\mathcal{A})$ is decidable.
$\Rightarrow \mathrm{A}$ computation on an automaton always stops.
- The "emptiness problem" $L(\mathcal{A}) \stackrel{?}{=} \emptyset$ is decidable.
\Rightarrow It's enough to test all possible words of length $\leq k$, where k is the number of states.

Decidable problems

- The "word problem" $w \stackrel{?}{\in} L(\mathcal{A})$ is decidable.
$\Rightarrow \mathrm{A}$ computation on an automaton always stops.
- The "emptiness problem" $L(\mathcal{A}) \stackrel{?}{=} \emptyset$ is decidable.
\Rightarrow It's enough to test all possible words of length $\leq k$, where k is the number of states.
- The "finiteness problem" $L(\mathcal{A})$ is finite is decidable.
\Rightarrow Test all possible words whose length is between k and $2 k$. If there exists u s.t. $k<|u|<2 k$ and $u \in L(\mathcal{A})$, then $L(\mathcal{A})$ is infinite.

Decidable problems

- The "word problem" $w \stackrel{?}{\in} L(\mathcal{A})$ is decidable.
$\Rightarrow \mathrm{A}$ computation on an automaton always stops.
- The "emptiness problem" $L(\mathcal{A}) \stackrel{?}{=} \emptyset$ is decidable.
\Rightarrow It's enough to test all possible words of length $\leq k$, where k is the number of states.
- The "finiteness problem" $L(\mathcal{A})$ is finite is decidable.
\Rightarrow Test all possible words whose length is between k and $2 k$. If there exists u s.t. $k<|u|<2 k$ and $u \in L(\mathcal{A})$, then $L(\mathcal{A})$ is infinite.
- The "equivalence problem" $L(\mathcal{A}) \stackrel{?}{=} L\left(\mathcal{A}^{\prime}\right)$ is decidable.
\Rightarrow it boils down to answering the question:

$$
\left(L(\mathcal{A}) \cap \overline{L\left(\mathcal{A}^{\prime}\right)}\right) \cup\left(L\left(\mathcal{A}^{\prime}\right) \cap \overline{L(\mathcal{A})}\right)=\emptyset
$$

Overview

(1) Formal Languages
(2) Formal Grammars
(3) Regular Languages

4 Formal complexity of Natural Languages

- Introduction
- Are NL regular?
- Are NL context-free?
- Are NL context-sensitive?

Motivation

Why an inquiry into the formal complexity of Natural Language(s) ?

- It gives us knowledge about the structure of natural languages,
- It helps us assess the adequation of linguistic formalisms,
- It gives bound for the complexity of NLP tasks,
- It provides us with predictions about human language processing.

Hypotheses

We assume that:

- We can talk about "natural language" in general: all languages have a similar structure, a similar power
- Natural languages are recursively enumerable, i.e. they are formal languages
- Natural languages are infinite
\Rightarrow Under these hypotheses, it is possible to ask the question: what is the complexity of natural languages ?

An infinite number of sentences

(1) Arbitrary long sentences can be built by adding new material:
(4) A stranger arrived.

An infinite number of sentences

(1) Arbitrary long sentences can be built by adding new material:
(4) A tall stranger arrived.

Formal Languages
Formal Grammars
Regular Languages
Formal complexity of Natural Languages References

An infinite number of sentences

(1) Arbitrary long sentences can be built by adding new material:
(4) A tall handsome stranger arrived.

An infinite number of sentences

(1) Arbitrary long sentences can be built by adding new material:
(4) A dark tall handsome stranger arrived.

An infinite number of sentences

(1) Arbitrary long sentences can be built by adding new material:
(4) A dark tall handsome stranger arrived suddenly.

An infinite number of sentences

(1) Arbitrary long sentences can be built by adding new material:
(4) A dark tall handsome stranger arrived suddenly.
(2) More interestingly, arbitrary long sentences can be built through center-embedding. In this case, there is a dependancy between arbitrary far apart elements:
(5) The cats hunt.
center-embedding: embedding a phrase in the middle of another phrase of the same type

An infinite number of sentences

(1) Arbitrary long sentences can be built by adding new material:
(4) A dark tall handsome stranger arrived suddenly.
(2) More interestingly, arbitrary long sentences can be built through center-embedding. In this case, there is a dependancy between arbitrary far apart elements:
(5) The cats the neighbor owns hunt.
center-embedding: embedding a phrase in the middle of another phrase of the same type

An infinite number of sentences

(1) Arbitrary long sentences can be built by adding new material:
(4) A dark tall handsome stranger arrived suddenly.
(2) More interestingly, arbitrary long sentences can be built through center-embedding. In this case, there is a dependancy between arbitrary far apart elements:
(5) The cats the neighbor who arrived owns hunt.
center-embedding: embedding a phrase in the middle of another phrase of the same type

An infinite number of sentences (cont'd)

Consider the 3 structures:

- If S_{1}, then S_{2}.
- Either S_{1} or S_{2}.
- The man who said S_{1} is coming today.
(1) The colored items are dependent one from the other
(2) It is possible to create nested sentences of arbitrary length:
(6) If either the man who said S_{a} is coming today, or S_{b}, then S_{c}.
\Rightarrow A look at various ways to form infinite sentences gives access to complexity.

Overview

(1) Formal Languages
(2) Formal Grammars
(3) Regular Languages

4 Formal complexity of Natural Languages

- Introduction
- Are NL regular?
- Are NL context-free?
- Are NL context-sensitive?

Preliminaries: a word on lexicon

(7) A dark tall handsome stranger arrived suddently.

Preliminaries: a word on lexicon

(7) A dark tall handsome stranger arrived suddently.

Let's leave aside lexicon issues

Preliminaries: a word on lexicon

(7) A dark tall handsome stranger arrived suddently.

Let's leave aside lexicon issues

Chomsky's first attempt

Consider the 3 structures:

- If S_{1}, then S_{2}.
- Either S_{1} or S_{2}.
- The man who said S_{1} is coming today.
(1) The colored items are dependent one from the other
(2) It is possible to create nested sentences of arbitrary length:
(8) If either the man who said S_{a} is coming today, or S_{b}, then S_{c}.

Since such sentences are instances of mirroring and since the mirror language is not regular, then English is not regular (Chomsky, 1957, p. 22).
Fallacious claim: a regular language may contain a non regular sub-language

Classical argument I

Let's consider the sentence(s):
(9) A man fired another man.

Classical argument I

Let's consider the sentence(s):
(9) A man that a man hired fired another man.

Classical argument I

Let's consider the sentence(s):
(9) A man that a man that a man hired hired fired another man.

Classical argument I

Let's consider the sentence(s):
(9) A man that a man that a man hired hired fired another man. A man (that a man) ${ }^{2}(\text { hired })^{2}$ fired another man.

Classical argument I

Let's consider the sentence(s):
(9) A man that a man that a man hired hired fired another man. A man (that a man) ${ }^{2}$ (hired) ${ }^{2}$ fired another man.

The sentences (10) are all well-formed sentences (for any n).
(10) A man (that a man $)^{n}(\text { hired })^{n}$ fired another man.

Classical Argument II

Let $x=$ that a man
$y=$ hired
$w=\mathrm{a}$ man
$v=$ fired another man

- $w x^{*} y^{*} v$ is regular
- English $\cap w x^{*} y^{*} v=w x^{n} y^{n} v$ (10)
- If English is regular, then $w x^{n} y^{n} v$ must be regular (for the intersection of two regular languages is regular)
- But $w x^{n} y^{n} v$ is not regular (pumping lemma). Contradiction
\Rightarrow English is not regular. (Schieber, 1985)

Discussion

Counter arguments :

- Natural languages are finite
- productivity doesn't seem to be bound
- a list of all possible sentences, supposedly finite, is still too long for a human to learn
- People are bad at interpreting embedding: there might be a limit
- there are indeed constraints on performance,
- but in writing, or with an appropriate intonation, there doesn't seem to be a hard-wired limit

Discussion: processing problems with nested structures

Psycholinguistic evidence that (11b) is more accepted than (11a) (Fodor, Frazier)
(11) a. The patient who the nurse who the clinic had hired admitted met Jack.
b. The patient who the nurse who the clinic had hired met Jack.

Other factors:
(12) a. The pictures which the photographer who I met yesterday took were damaged by the child.
b. ?The pictures which the photographer who John met yesterday took were damaged by the child.
(13) a. Isn't it true that example sentences [that people [that you know] produce] are more likely to be accepted? (De Roeck et al, 1982)
b. A book [that some Italian [I've never heard of] wrote] will be published soon by MIT Press (Frank, 1992)

Examples

Bad examples :
(14) A girl that the man that the doctor knows like was fired.

Good examples:
(15) A foreman that an employee who were recently hired talked with was fired.

Overview

(1) Formal Languages
(2) Formal Grammars
(3) Regular Languages

4 Formal complexity of Natural Languages

- Introduction
- Are NL regular?
- Are NL context-free?
- Are NL context-sensitive?

Pumping lemma: intuition

(1) If a word is long enough, then there is (at least) one non terminal symbol appearing several times in its derivation.
"long enough" ?

S	\rightarrow	$A B$
A	\rightarrow	$a b a c c a b c a$
	\mid	$a b S b a$
B	\rightarrow	$c c c c c$

Minimal length : 14:
$S \rightarrow A B \rightarrow$ abaccabcaB \rightarrow abaccabcaccccc

Pumping lemma: intuition

2 Let's call this non terminal symbol A.

Pumping lemma: intuition

2 Let's call this non terminal symbol A.

Pumping lemma: intuition

2 Let's call this non terminal symbol A.

u Av

Z

$$
\begin{aligned}
& A \xrightarrow{*} u A v \\
& A \xrightarrow{*} u A v \xrightarrow{*} u z v \\
& A \xrightarrow{*} u A v \xrightarrow{*} u u A v v \xrightarrow{*} \underbrace{u \ldots u}_{n} z \underbrace{v \ldots v}_{n}
\end{aligned}
$$

Pumping Lemma for CF languages

Def. 20 (Star lemma - CF languages)

If L is context-free, there exists $p \in \mathbb{N}$ such that:
$\forall w$ s.t. $|w| \geqslant p$,
w can be factorized $w=r s t u v$, with:

$$
\begin{aligned}
& |s u| \geqslant 1 \\
& |s t u| \leqslant p
\end{aligned}
$$

$$
\forall i \geqslant 0, \quad r s^{i} t u^{i} v \in L
$$

(Bar-Hillel et al. , 1961)

Pumping lemma: Consequences

The pumping lemma gives us a tool to prove that a language is not context-free.

\mathcal{L} context-free	\Rightarrow pumping lemma $\left(\forall i, r s^{i} t u^{i} v \in \mathcal{L}\right)$	
pumping lemma	\nRightarrow	\mathcal{L} context-free
NO pumping lemma	$\Rightarrow \mathcal{L}$ NOT context-free	

to prove that \mathcal{L} is
context-free provide a type 2 grammar
not context-free show that the pumping lemma does not apply

Results: expressivity

- well-parenthetized words (dyck's language) is context-free $S \rightarrow(S) S \mid \varepsilon$
- $a^{n} b^{n}(n \geqslant 0)$ is a context-free language $S \rightarrow a S b \mid \varepsilon$
- $w w^{R}, w \in \Sigma^{*}$ (mirror language) is a context-free language $S \rightarrow a S a|b S b| \varepsilon$
- $w w, w \in \Sigma^{*}$ (copy language) is not context-free proof: pumping lemma
- $a^{n} b^{n} c^{n}$ is not context-free proof: pumping lemma
- $a^{m} b^{n} c^{m} d^{n}$ is not context-free proof: pumping lemma
- $x a^{m} b^{n} y c^{m} d^{n} z$ is not context-free proof: pumping lemma

Closure properties I

- CF languages are closed under rational operations
- union (gather all the rules, avoiding name conflicts, and adding a new start rule $S \rightarrow S_{1} \mid S_{2}$),
- product $\left(S \rightarrow S_{1} S_{2}\right)$,
- and Kleene $\operatorname{star}\left(S \rightarrow S_{1} S \mid \varepsilon\right)$.

Closure properties II : intersection

- CF languages are not closed under intersection

Example

$L_{1}=\left\{a^{i} b^{i} c^{j} \mid i, j \geq 0\right\}$ is context-free: $\quad S \rightarrow X Y$ $X \rightarrow a X b \mid \varepsilon$ $Y \rightarrow c Y \mid \varepsilon$
$L_{2}=\left\{a^{i} b^{j} c^{j} \mid i, j \geq 0\right\}$ is also context-free: $\quad S \rightarrow X Y$ $X \rightarrow a X \mid \varepsilon$ $Y \rightarrow b Y c \mid \varepsilon$
But $L_{1} \cap L_{2}=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not contex-free.

Closure properties III: other results

- CF languages are not closed under complement (since they are not closed under intersection)
- CF languages are closed under intersection with a regular language
- a sub-class of CF languages, deterministic CF languages are closed for set complement, but not for union (one can easily define an intrinsequely non deterministic language as the union of two "independant" languages)

Final argument I

After many attempts by various scholars, attempts which are severely critized and ruined in (Gazdar \& Pullum, 1985), Schieber (1985) came up with a widely accepted answer:
(1) In swiss-german, subordinate clauses can have a structure where all NPs precede all Vs. (16)
(16) Jan säit das mer NP* es huus haend wele V^{*} aastrüche Jan said that we NP* the house have wanted V^{*} paint 'Jan said that we have wanted (that) $\mathrm{V}^{*} \mathrm{NP}^{*}$ paint the house'
(2) Among those subordinate clauses, those where all the dative NPs precede all the accusative NPs are well-formed. (17)

Final argument II

(3) The number of verbs requiring a dative has to be equal to the number of dative NPs, the same for accusative.
(9) The number of verbs in a subordinate clause is limited only by performance
Let R be the language:
$\mathrm{R}=\left\{\right.$ Jan säit das mer $\left(\mathrm{d}^{\prime} \mathrm{chind}\right)^{h}$ (em Hans) ${ }^{i}$ es huus haend wele $(\text { laa })^{j}(\text { hälfe })^{k}$ aastrüche,
$i, j, k, h \geqslant 1\}$
Then let $L=$ Swiss-German $\cap R=$
$\left\{J a n\right.$ säit das mer (d'chind) ${ }^{m}(\text { em Hans) })^{n}$ es huus haend wele (laa) ${ }^{m}$ (hälfe) ${ }^{n}$ aastrüche, $\left.m, n \geqslant 1\right\}$
L is not context-free, whereas R is regular.

Overview

(1) Formal Languages
(2) Formal Grammars
(3) Regular Languages

4 Formal complexity of Natural Languages

- Introduction
- Are NL regular?
- Are NL context-free?
- Are NL context-sensitive?

Current proposal

(1) The context-sensitive class seems too big: for instance $\left\{a^{2^{i}} / i \geqslant 0\right\}$ is context-sensitive.
(2) Joshi (1985) proposed a subclass of type 1 languages, namely the class of mildly context-sensitive languages (MCSL), this class has the following properties:

- $w w$ is MCS
- $a^{n} b^{n} c^{n}$ is MCS
- $a^{n} b^{n} c^{n} d^{n}$ is MCS
- $a^{i} b^{j} c^{i} d^{j}$ is MCS
- $a^{n} b^{n} c^{n} d^{n} e^{n}$ is not MCS
- www is not MCS
- $a b^{h} a b^{i} a b^{j} a b^{k} a b^{\prime}, h>i>j>k>l \geqslant 1$ is not MCS
- $a^{2^{i}}$ is not MCS

Current proposal

(1) The context-sensitive class seems too big: for instance $\left\{a^{2^{i}} / i \geqslant 0\right\}$ is context-sensitive.
(2) Joshi (1985) proposed a subclass of type 1 languages, namely the class of mildly context-sensitive languages (MCSL), this class has the following properties:

- $w w$ is MCS
- $a^{n} b^{n} c^{n}$ is MCS
- $a^{n} b^{n} c^{n} d^{n}$ is MCS
- $a^{i} b^{j} c^{i} d^{j}$ is MCS
- $a^{n} b^{n} c^{n} d^{n} e^{n}$ is not MCS
- www is not MCS
- $a b^{h} a b^{i} a b^{j} a b^{k} a b^{\prime}, h>i>j>k>l \geqslant 1$ is not MCS
- $a^{2^{i}}$ is not MCS

More about MCSL

Interesting properties of MCSL:

- restricted growth: if L is MCS, there is k such that for all words $w \in L$, there is a word w^{\prime} s.t. $\left|w^{\prime}\right| \leqslant|w|+k$
- word problem for MCSL are of a polynomial complexity

These properties are arguably common with natural languages

The formalism introduced by Joshi, Tree Adjoining Grammars, defines the class of MCSL.

Formal Languages
Formal Grammars Regular Languages
Formal complexity of Natural Languages References

Minimalist grammars (Stabler, 2011)

Minimalist grammars (MGs), as defined here by (5), (6) and (8), have been studied rather carefully. It has been demonstrated that the class of languages definable by minimalist grammars is exactly the class definable by multiple context free grammars (MCFGs), linear context free rewrite systems (LCFRSs), and other formalisms [62,64,66,41]. MGs contrast in this respect with some other much more powerful grammatical formalisms (notably, the 'Aspects' grammar studied by Peters and Ritchie [76], and HPSG and LFG $[5,46,101]$):

The MG definable languages include all the finite (Fin), regular (Reg), and context free languages (CF), and are properly included in the context sensitive (CS), recursive (Rec), and recursively enumerable languages (RE). Languages definable by tree adjoining grammar (TAG) and by a certain categorial combinatory grammar (CCG) were shown by Vijay Shanker and Weir to be sandwiched inside the MG class [103]. ${ }^{4}$ With all these resultSorbonne FV
Theorem 1. $C F \subset$ $T A G \equiv C C G$ $M C F G \equiv L C F R S \equiv M G$ $\subset C S$

References I

Bar-Hillel, Yehoshua, Perles, Micha, \& Shamir, Eliahu. 1961. On formal properties of simple phrase structure grammars. STUF-Language Typology and Universals, 14(1-4), 143-172.
Chomsky, Noam. 1957. Syntactic Structures. Den Haag: Mouton \& Co.
Gazdar, Gerald, \& Pullum, Geoffrey K. 1985 (May). Computationally Relevant Properties of Natural Languages and Their Grammars. Tech. rept. Center for the Study of Language and Information, Leland Stanford Junior University.
Gibson, Edward, \& Thomas, James. 1997. The Complexity of Nested Structures in English: Evidence for the Syntactic Prediction Locality Theory of Linguistic Complexity. Unpublished manuscript, Massachusetts Institute of Technology.
Joshi, Aravind K. 1985. Tree Adjoining Grammars: How Much Context-Sensitivity is Required to Provide Reasonable Structural Descriptions? Tech. rept. Department of Computer and Information Science, University of Pennsylvania.
Langendoen, D Terence, \& Postal, Paul Martin. 1984. The vastness of natural languages. Basil Blackwell Oxford.

Mannell, Robert. 1999. Infinite number of sentences. part of a set of class notes on the Internet. http://clas.mq.edu.au/speech/infinite_sentences/.
Schieber, Stuart M. 1985. Evidence against the Context-Freeness of Natural Language. Linguistics and Philosophy, 8(3), 333-343.

Stabler, Edward P. 2011. Computational perspectives on minimalism. Oxford handbook of linguistic minimalism, 617-643.

