Natural language syntax: parsing and complexity

Timothée Bernard and Pascal Amsili

Université Paris Cité, Université Sorbonne Nouvelle timothee.bernard@u-paris.fr, pascal.amsili@ens.fr

Ljubljana, Slovenia - August 7-11, 2023
ESSLLI foundational course in Language and Computation

Overview of the course

- Day 1: Formal languages and syntactic complexity.
- Day 2: The complexity of natural language.
- Day 3: Historic algorithms for parsing.
- Day 4: Modern approaches to parsing.
- Day 5: Neural networks and error propagation.

Day 1

Today's contents

- Formal languages.
- Automata.
- Formal grammars.
- The recognition and the parsing problems.
- The Chomsky-Schützenberger hierarchy.

Languages are sets of words (finite sequences of symbols)

- Alphabet (Σ): finite set of symbols called letters.
(1) Examples:
a. $\{0,1\}$
b. $\quad\{a, b, c, \cdots, z\}$
- (Finite) Word (w): finite sequence of letters.
(2) Examples:
a. 000110101
b. bonjour
c. $\quad \epsilon$ (the empty word)
- (Formal) Language: set of words.

A letter is anything considered atomic

- "letter" 三 "atomic"
- $w=$ Hello world! can be seen as a word on $\Sigma=\{$ Hello, world, ! $\}$.
- Length: $|w|=3$
- Indices: $w_{1}=$ Hello, $w_{2}=$ world, $w_{3}=$!

Languages can be simple or weird

- The set L_{1} of Arabic numerals, on $\Sigma=\{0,1, \ldots, 9\}$.

$$
\begin{aligned}
& 0,291,9999 \in L_{1} ; 00003 \notin L_{1} \\
& \left(L_{1}=\left\{w \in \Sigma^{+}\left|w_{1} \neq 0 \vee\right| w \mid=1\right\}\right)
\end{aligned}
$$

- The set L_{2} of Roman numerals, on $\Sigma=\{I, V, X, L, C, D, M\}$. $I, M M X X I I I, V I I I \in L_{2} ; I I X \notin L_{2}$
- The set L_{3} of first-order logic formulas, on

$$
\begin{aligned}
& \Sigma=\{\wedge, \neg,(,), p, q, r, s, \ldots\} \\
& p,(\neg p),(q \wedge r) \in L_{3} ; p \neg \notin L_{3}
\end{aligned}
$$

- The set of valid zip files, on $\Sigma=\{0,1\}$.
- The set of Python programs, on the set of characters allowed to write them.
- The set of theorems of ZFC (set theory), on the set of characters allowed to write them.

Languages can be very simple or very weird

- Given some Σ..
- The empty language \emptyset (no word is in \emptyset).
- The full language Σ^{\star} (any word on Σ is in Σ^{\star}).
- Some "random" language L obtained by going through all $w \in \Sigma^{\star}$, tossing a fair coin and including w in L in case of a head.

Natural languages can be seen as formal languages

- Let Σ be the set of English words (+ punctuation and digits).
- (English words are here considered to be atomic.)
- Let L be the grammatical sentences of English seen as sequences of symbols in Σ.
- (This definition requires binary grammaticality judgments for all sequences; \rightarrow Day 2.)
- $L \subseteq \Sigma^{\star}$, is a formal language.

The recognition problem: computing grammaticality

- Given Σ and $L \subseteq \Sigma^{\star}$...
- The recognition problem for L :

Given some $w \in \Sigma^{\star}$, is w in L ?

- Very easy if L is finite.
- Easy for the set of Arabic numerals, slightly more complex for Roman numerals.
- A bit harder for the set of programs in Python.
- Quite hard for the set of theorems of ZFC.
- Impossible (except if you're very lucky) for a random language.
- What about a natural language such as English? \rightarrow Day 2

There is not just one notion of complexity

- Worst-case time complexity of an algorithm: Given an input of size n, how many basic steps are required to run the algorithm?
- Worst-case space complexity of an algorithm: Given an input of size n, how much memory is required to run the algorithm?
- These notions usually assume the Turing machine as model of computation.
- The recognition problem is traditionally studied using another notion of complexity, based on multiple models of computation; what type of memory is used?

A DFA has a finite fixed amount of memory

- Deterministic Finite-state Automaton (DFA): $\left(\Sigma, Q, q_{0}, F, \delta\right)$ where
- Σ is an alphabet;
- Q is a finite set (of states);
- $q_{0} \in Q$ (the initial state);
- $F \subseteq Q$ (final states);
- δ is a function $Q \times \Sigma \rightarrow Q$ (the transition function).
- Memory: Nothing beyond the states themselves.

A DFA encodes a formal language

- A word w is accepted if reading w leads from the initial state to a final state.
- For a DFA $A, \mathcal{L}(A)$ is the set of words that A accepts.
- Here?
- Not all languages are encoded (recognised) by a DFA; ex: $\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$ (proof in Day 2)

Memory is (computational) power

- Other automata models have, in addition, a memory structure that is used in transitions.
- There is also a notion of (non-)determinism, but let's ignore this.
- The models in the next slide have increasing computational power.
- Computational power: the ability to solve problems.

Stacks and tapes of memory increase computational power

- Pushdown automaton: an unbounded ${ }_{i}$ stack $_{a}$ of memory;
a) only the top cell can be read/overwritten/cleared, a new can can be added on top, the stack is initially empty and the input word is still written on a dedicated buffer,
i) no limit to the number of cells;
- Linear bounded automaton: a linearly bounded $_{\mathrm{ij}}$ tape $_{\mathrm{b}}$ of memory;
b) a movable "head" points to a cell, only this cell can be read/written, the input word is initially written on the tape rather than on a dedicated buffer,
ii) the maximum number of cells is given by a linear function of the length of the input word;
- Turing machine: an unbounded ${ }_{\mathrm{i}}$ tape $_{\mathrm{b}}$ of memory.

The Chomsky-Schützenberger hierarchy

- 4+1 complexity classes of languages are represented here.
- " +1 " because some languages are beyond type 0 .
- Non-deterministic versions of the models. (\rightarrow matters for types 1 and 2)

Grammars are finite sets of rewriting rules

- Unrestricted grammar: (N, Σ, P, S) where
- N is a finite set (of non-terminal symbols);
- Σ is an alphabet;
- $P \subseteq(N \cup \Sigma)^{+} \times(N \cup \Sigma)^{\star}$ is a finite set (of production rules);
- $S \in N$ (the axiom);
and $N \cap \Sigma=\emptyset$.
- Production rules are rewriting rules; (α, β) is noted " $\alpha \rightarrow \beta$ ".
- Using $b X \rightarrow X a b, a b X c$ can be rewritten as $a X a b c$; this fact is noted " $a b X c \underset{b X \rightarrow X a b}{\Rightarrow} a X a b c$ ".
- In $\alpha \rightarrow \beta, \alpha$ is the left-hand side and β the right-hand side.

Grammars generate languages

- $w \in \Sigma^{\star}$ is generated by a grammar if there is a derivation $S \Rightarrow \ldots \Rightarrow w$.
- Like automata, grammars encode (generate) languages.
- Example with $G=(\{S\},\{a, b\},\{S \rightarrow \epsilon, S \rightarrow a S b\}, S)$:
- derivations:
- $S \Rightarrow \epsilon$
- $S \Rightarrow a S b \Rightarrow a b$
- $S \Rightarrow a S b \Rightarrow a a S b b \Rightarrow a a b b$
- $S \Rightarrow a S b \Rightarrow a a S b b \Rightarrow a a a S b b b \Rightarrow$ aaabbb
- ...
- $\mathcal{L}(G)=\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$
- Rmk: Two distinct grammars can generate the same language.

Rewriting is (expressive) power

- Other grammatical formalisms restrict the form of production rules.
- The formalisms in the next slide have decreasing expressive power.
- These formalisms match the previous models of automata.

Rewriting is (expressive) power

- Context-sensitive grammar (CSG): [intuition by examples] ex: $a b X c \rightarrow a b Y z Z c$
- Context-free grammar (CFG): the left-hand side of a rule is a single terminal symbol. ex: $X \rightarrow Y z Z$
- Regular grammar (RG): in addition, the right-hand side of a rule is either empty (ϵ), a single non-terminal symbol, or a non-terminal followed by a terminal symbol. ex: $X \rightarrow \epsilon, X \rightarrow a, X \rightarrow a Y$

The Chomsky-Schützenberger hierarchy

R, CF and CS derivations are constituent trees

Ambiguity is when a word has two structures

- A grammar G is ambiguous iff $\exists w \in \mathcal{L}(G)$ s.t. w has two distinct syntactic structures (according to G).
- $G=(\{S\},\{0,1, \cdots, 9,+,-\},\{S \rightarrow 0|1| \cdots|9| S+S \mid S-S\}, S)$
- $w=4+6-5$:

The parsing problem: finding derivations

- Given a grammar G on some alphabet Σ...
- The parsing problem for G :

Given some $w \in \Sigma^{\star}$, what are the derivations (if any) of w in G ?

- (Solving the parsing problem for G entails solving the recognition problem for $\mathcal{L}(G)$.)
- Practical solutions to the parsing problem: Days 3-4.

Syntactic complexity vs semantic expressivity

- Context-free grammars are commonly used to describe the syntax of many logical languages (e.g. PL, FOL), some programming languages, and parts of $\mathrm{NL}(\rightarrow$ Day 2$)$.
- Untyped λ-calculus: CF syntax, Turing-complete semantics. "How is this possible?"
- \rightarrow The syntactic complexity and the semantic expressivity of interpreted languages are two distinct notions.
- Jot (https://en.wikipedia.org/wiki/Iota_and_Jot) is $\{0,1\}^{\star}$, a regular language, compositionally interpreted as a Turing-complete language.

The recognition/parsing problems are very general

- Consider any binary ("yes/no") problem P and see it as the set of inputs for which the answer is positive.
- Let str be a linearisation function for the possible inputs of P, and $L=\{\operatorname{str}(i n) \mid i n \in P\}$.
- Solving P is equivalent to the recognition problem for L.
- More generally, any computable function f can be encoded as a grammar s.t. after parsing the input w, the output $f(w)$ can be read off the derivation.
- \rightarrow One can compute "syntactically": a grammar is a program. (The parser is the machine that runs it.)
- The formalism of unrestricted grammars is a Turing-complete programming language. (syntactically regular?)

Exercise: Checking addition as CF parsing/recognition

- Unary notation of natural integers:
- ""' for 0;
- "i" for 1 ;
- "ii" for 2;
- "iii" for 3;
- ...
- Exercise: Write a CFG G that generates exactly the strings " $a+b=c$ " for all natural numbers a, b and c written in unary notation and s.t. $a+b=c$.
- With G, a CF parser can solve this arithmetic problem.
- In other words, some non-deterministic pushdown automaton can solve this problem. (in fact, a deterministic one can)

Exercise: Boolean satisfiability as CF parsing/recognition

- Consider the set of propositional logic formulas built from (at most) n propositional letters $p_{1}, p_{2}, \ldots, p_{n}$.
Ex: $\left(p_{1} \wedge\left(\neg p_{2}\right)\right),\left(\neg\left(\neg\left(p_{2} \wedge p_{5}\right)\right)\right),\left(p_{4} \wedge\left(\neg p_{4}\right)\right)$
- Problem: Which of these formula are satisfiable?

Ex: $\left(p_{1} \wedge\left(\neg p_{2}\right)\right)$ and $\left(\neg\left(\neg\left(p_{2} \wedge p_{5}\right)\right)\right)$ but not $\left(p_{4} \wedge\left(\neg p_{4}\right)\right)$

- Exercise: Write a CFG G that generates exactly L, the set of satisfiable formula.
- With G, a CF parser can solve this satisfiability problem.
- In other words, some non-deterministic pushdown automaton can solve this problem.
- Hint: First consider an arbitrary interpretation function $\left\{p_{1}, p_{2}, \cdots, p_{n}\right\} \rightarrow\{0,1\}$, then generalise.

Day 1: Summary

- Languages are sets of words (finite sequences of symbols).
- Automata are finite state machines with or without additional memory.
- Grammars are finite sets of rewriting rules.
- The parsing problem for a grammar consists in finding derivations.
- All solvable problems can be expressed as parsing problems.
- The Chomsky-Schützenberger hierarchy is a hierarchy of classes of languages, of models of automata, and of grammatical formalisms.
- For interpreted languages, syntactic complexity is not semantic expressivity.

