A Google-Proof Collection of French Winograd Schemas

Pascal Amsili Olga Seminck

Laboratoire de Linguistique Formelle
Université Paris Diderot

CORBON Workshop, april 2017
Introduction
- Winograd Schemas
- Test for Artificial Intelligence
- State of the Art

Collection of French Schemas
- Project
- Adaptation
- Method

Test of Google-Proofness
- Google-Proofness
- Mutual Information
- Applicability of the measure
- Probability Estimation
- Results

Conclusion
1 Introduction
 • Winograd Schemas
 • Test for Artificial Intelligence
 • State of the Art

2 Collection of French Schemas
 • Project
 • Adaptation
 • Method

3 Test of Google-Proofness
 • Google-Proofness
 • Mutual Information
 • Applicability of the measure
 • Probability Estimation
 • Results

4 Conclusion
Winograd Schemas

(Levesque et al., 2011)

- a sentence containing an anaphor & at least two possible antecedents

(1) **Nicolas** could not carry **his son** because **he** was too **weak**.

Who was too **weak**?

- R0 : Nicolas
- R1 : his son
Winograd Schemas

(Levesque et al., 2011)

- a sentence containing an anaphor & at least two possible antecedents

(1) **Nicolas** could not carry **his son** because [he] was too **weak**.
Who was too **weak**?

R0 : Nicolas
R1 : his son

- the “correct” answer is obvious for humans
- an alternative sentence is obtained by substituting one specific expression:
Winograd Schemas

(Levesque et al., 2011)

- a sentence containing an anaphor & at least two possible antecedents

(1) **Nicolas** could not carry **his son** because **he** was too **weak**.

Who was too **weak**?

R0 : Nicolas
R1 : his son

- the “correct” answer is obvious for humans
- an alternative sentence is obtained by substituting one specific expression:

(2) **Nicolas** could not carry **his son** because **he** was too **heavy**.

Who was too **heavy**?
Winograd Schemas

(Levesque et al., 2011)

- a sentence containing an anaphor & at least two possible antecedents

(1) **Nicolas** could not carry **his son** because **he** was too weak.
Who was too weak?

R0 : Nicolas
R1 : his son

- the “correct” answer is obvious for humans

- an alternative sentence is obtained by substituting one specific expression:

(2) **Nicolas** could not carry **his son** because **he** was too heavy.
Who was too heavy?

- the “correct” answer now changes (still obvious for humans)
General Format

(3) Frank was upset with Tom because the toaster he had bought from/sold to him didn’t work. Who had bought/sold the toaster?

R0 : Frank
R1 : Tom

Conventions:
- special ; alternate
- R0 is the first NP, R1 the second NP
- Item-Spe: item formed with the special expression
- Item-Alt: item formed with the alternate expression
- Correct answer Item-Spe : R0 ; correct answer Item-Alt : R1
Test for Artificial Intelligence

Winograd Schemas Challenge (WSC):

alternative to the Turing Test (Levesque et al., 2011)

- requires reasoning capacity + encyclopedic knowledge
- solves issues with the Turing Test (TT):
 - deception: to pass the TT, a machine has to pretend it is human
 - conversation: in a conversation, a machine can use evasive strategies (as Eliza)
2016: first Winograd Schema Challenge (Morgenstern et al., 2016)

- task: pronoun disambiguation problem (PDP) inspired by the format of Winograd Schemas
- collection of items like (4)

(4) Mrs. March gave the mother tea and gruel, while she dressed the little baby as tenderly as if it had been her own.

- not always grouped by pairs
- more than 2 antecedent candidates
 ⇒ baseline (chance level) around 45% (Liu et al., 2016)
Actual challenge(s): results

- winning system: Liu et al. (2016): 58% success rate
 - unsupervised feature extraction
 - commonsense Knowledge Enhanced Embeddings
- more recent version by the same group: 66.7% success rate

Other attempts on specific subsets:

- Bailey et al. (2015): explicit inference rules and axioms to deal with schemas where discourse relations play a decisive role;
- Schüller (2014): WS tackled by Formalizing Relevance Theory in Knowledge Graphs;
- Sharma et al. (2015): deal with the $\approx 25\%$ of the schemas that exhibit causal relations, achieve $\approx 75\%$ accuracy

For the upcoming years, solving Winograd Schemas is likely to remain a challenge for NLP and AI communities.
Introduction
- Winograd Schemas
- Test for Artificial Intelligence
- State of the Art

Collection of French Schemas
- Project
- Adaptation
- Method

Test of Google-Proofness
- Google-Proofness
- Mutual Information
- Applicability of the measure
- Probability Estimation
- Results

Conclusion
Project

- Provide a data set for French
- Allow for cross-linguistic comparison
- Propose a systematic account for Google-proofness
Original collection: 144 schemas in English (Davis et al., 2015)
Translation of the whole collection into Japanese
(with or without adaptation of the proper nouns)
12 schemas translated into Chinese

- http://www.cs.nyu.edu/faculty/davise/papers/
 WinogradSchemas/WS.html
- Not documented (literal/non literal translation)
Languages

- Original collection: 144 schemas in English (Davis et al., 2015)
- Translation of the whole collection into Japanese (with or without adaptation of the proper nouns)
- 12 schemas translated into Chinese
 - [Link](http://www.cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html)
 - Not documented (literal/non literal translation)
- 107 schemas in French translated/adapted from the original set.
 - [Link](http://www.llf.cnrs.fr/winograd-fr)
Adaptation examples (i)

- Gender/number features

(5) The **drain** is clogged with **hair**. **It** has to be ⟨**cleaned/removed**⟩.

Direct translation not available: the word ‘hair’ in French (cheveux) is plural, while ‘drain’ (siphon) is singular.
We replaced ‘hair’ with ‘soap’ (savon).

(6) Il y a du **savon** dans le **siphon de douche**. Il faut **le** [retirer/nettoyer].

There is soap in the shower drain. It has to be be ⟨**removed/cleaned**⟩.
Adaptation examples (ii)

- Lexical difficulties

(7) Susan knows all about Ann’s personal problems because she is ⟨nosy/indiscreet⟩.

French translation for ‘indiscreet’: indiscrète. However, in French une personne indiscrète can be:

- a person who reveals things that should stay secret
- a person who tries insistently to find out what should stay secret
Adaptation examples (ii)

- Lexical difficulties

(7) Susan knows all about Ann’s personal problems because she is \(\langle\text{nospy/indiscreet}\rangle\).

French translation for ‘indiscreet’: *indiscrète*.
However, in French *une personne indiscrète* can be:
- a person who reveals things that should stay secret
- a person who tries insistently to find out what should stay secret
 \(\rightarrow\) a nosy person!
Adaptation examples (ii)

- Lexical difficulties

(7) Susan knows all about Ann’s personal problems because she is ⟨nosy/indiscreet⟩.

French translation for ‘indiscreet’: indiscrète.
However, in French une personne indiscrète can be:
- a person who reveals things that should stay secret
- a person who tries insistently to find out what should stay secret
 → a nosy person!

In the French version of (7) we therefore changed the alternate to ⟨bavarde⟩ (talkative)

(8) Sylvie est au courant de tous les problèmes personnels de Marie car elle est ⟨curieuse/bavarde⟩.
Sylvie knows all Mary’s personal problems because she is ⟨curious/talkative⟩
Adaptation examples (iii)

- Infinitival purpose phrases: language preferences

(9) *Mary* tucked her daughter *Anne* into bed, so that *she* could *(work/sleep)*.
Who is going to *(work/sleep)*?

R0 : Mary
R1 : Anne

in French, a purpose phrase about the subject can only be expressed via an infinitival clause (literal equivalent of *in order to work*).

⇒ the French counterpart of (9) unable to generate two questions where both NPs are possible antecedents.
Method

- translation done by two interns,
- validated by another intern while computing the Google-proof figures
- finally checked by both authors.

- most natural sounding solutions preferred over closeness to the original
- long translations avoided
- items for which no consensus could be found were simply removed
107 schemas in xml format.
a reference to the English counterpart will be included (when applicable)

```xml
<schema id="9" engn="46">
  <text>
    <txt1> Si l’escroc avait réussi à tromper Samuel, il aurait pu </txt1>
    <wordA>gagner</wordA>
    <wordB>perdre</wordB>
    <txt2> beaucoup d’argent. </txt2>
  </text>
  <question>
    <qn1>Qui aurait pu </qn1>
    <qwordA>gagner</qwordA>
    <qwordB>perdre</qwordB>
    <qn2> beaucoup d’argent ?</qn2>
  </question>
  <answer1>l’escroc</answer1>
  <answer2>Samuel</answer2>
</schema>
```
1 Introduction
 - Winograd Schemas
 - Test for Artificial Intelligence
 - State of the Art

2 Collection of French Schemas
 - Project
 - Adaptation
 - Method

3 Test of Google-Proofness
 - Google-Proofness
 - Mutual Information
 - Applicability of the measure
 - Probability Estimation
 - Results

4 Conclusion
Google-proofness

- by design, schemas cannot be resolved without reasoning about world knowledge

“... there should be no obvious statistical test over text corpora that will reliably disambiguate [the anaphor of a Winograd item] correctly.”
(Levesque et al., 2011)

(10) Many **astronomers** are engaged in the search for distant **galaxies**. **They** are spread all over the **universe**.

- Even though some items of the English collection have been checked for Google-proofness,
- we wanted a systematic test applicable to the whole collection,
- so we devised a simple statistic measure based on Mutual Information.
Mutual Information

Mutual Information: concept from Information Theory (Shannon and Weaver, 1949) that measures the mutual dependence of two random variables.

Mutual Information can be used to measure word association: when two words x and y are mutually dependent, the probability of their cooccurrence $P(x, y)$ will be higher than the probability of observing them together by chance: $MI(x, y)$ will be positive:

$$MI(x, y) = \log_2 \left(\frac{P(x, y)}{P(x)P(y)} \right)$$ (1)

(Ward Church and Hanks, 1990)
Computation

(11) La sculpture est tombée de l’étagère car elle était trop ⟨encombrée/lourde⟩.

The sculpture fell off the shelf because it was too ⟨cluttered/heavy⟩
Computation

La sculpture est tombée de l’étagère car elle était trop ⟨encombrée/lourde⟩.

The sculpture fell off the shelf because it was too ⟨cluttered/heavy⟩

Item Spe

\[MI(\text{sculpture, encombrer}) = 4.23 \]
\[MI(\text{étagère, encombrer}) = 10.01 \]
Computation

(11) La sculpture est tombée de l’étagère car elle était trop ⟨encombrée/lourde⟩.

The sculpture fell off the shelf because it was too ⟨cluttered/heavy⟩

<table>
<thead>
<tr>
<th>Item Spe</th>
<th>$MI(\text{sculpture, encombrer})$</th>
<th>$= 4.23$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$MI(\text{étagère, encombrer})$</td>
<td>$= 10.01$</td>
</tr>
</tbody>
</table>
Computation

(11) La sculpture est tombée de l’étagère car elle était trop ⟨encombrée/lourde⟩.

The sculpture fell off the shelf because it was too ⟨cluttered/heavy⟩

<table>
<thead>
<tr>
<th>Item Spe</th>
<th>Mutual Information (MI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sculpture, encombrer</td>
<td>$= 4.23$</td>
</tr>
<tr>
<td>étagère, encombrer</td>
<td>$= 10.01$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item Alt</th>
<th>Mutual Information (MI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sculpture, lourd</td>
<td>$= 2.41$</td>
</tr>
<tr>
<td>étagère, lourd</td>
<td>$= 4.03$</td>
</tr>
</tbody>
</table>
Computation

La sculpture est tombée de l’étagère car elle était trop encombrée/lourde.
The sculpture fell off the shelf because it was too cluttered/heavy

\[
\begin{align*}
\text{Item Spe} & \quad MI(\text{sculpture}, \text{encombrer}) & = 4.23 \\
& \quad MI(\text{étagère}, \text{encombrer}) & = 10.01 \\
\text{Item Alt} & \quad MI(\text{sculpture}, \text{lourd}) & = 2.41 \\
& \quad MI(\text{étagère}, \text{lourd}) & = 4.03
\end{align*}
\]
Computation

La sculpture est tombée de l’étagère car elle était trop encombrée/lourde.

The sculpture fell off the shelf because it was too ⟨cluttered/heavy⟩

$$\begin{align*}
\text{Item Spe} & \quad MI(\text{sculpture, encombrer}) = 4.23 \\
& \quad MI(\text{étagère, encombrer}) = 10.01 \\
\text{Item Alt} & \quad MI(\text{sculpture, lourd}) = 2.41 \\
& \quad MI(\text{étagère, lourd}) = 4.03
\end{align*}$$

Reliability of scores differences: introduction of a threshold.
Applicability: lexeme extraction

- Extraction of relevant expressions:
 - Easy case: expected answers (R0/R1) + special/alternate

In fact we want to make a choice between possible answers:

(12) **item Spe:**
The sculpture fell off the shelf because it was too cluttered. What was too cluttered?
R0: the sculpture... was too cluttered
R1: the shelf... was too cluttered

(13) **item Alt:**
The sculpture fell off the shelf because it was too heavy. What was too heavy?
R0: the sculpture... was too heavy
R1: the shelf... was too heavy
Applicability: excluded items (1)

- Difficult case:

(14) **Item Spe:**
In the middle of the outdoor concert, the rain started falling, and it continued until 10. What continued until 10?
R0: the rain... continued until 10
R1: the concert... continued until 10

(15) **Item Spe:**
In the middle of the outdoor concert, the rain started falling, but it continued until 10. What continued until 10?
R0: the rain... continued until 10
R1: the concert... continued until 10

15 schemas of this form were excluded from our study.
Applicability: excluded items (2)

Fancy schemas:

Look! There is a ⟨shark/minnow⟩ swimming right below that duck!

It had better get away to safety fast! (Davis et al., 2015, ex(93))

What needs to get away to safety?
Answer Pair A: The shark/The duck.
Answer Pair B: The minnow/The duck.

The pair of possible answers depends on the choice of words, since the special and alternate words are possible referents.

2 schemas of this form were excluded from our study.
Applicability: proper nouns

- Proper nouns

(16) *Steve* follows *Fred*’s example in everything.

- *He* \langle admire/influence\rangle him hugely.
- *Who* \langle admire/influence\rangle whom?

⇒ Google-proof by design

- 44 schemas of this sort, still included in the scores
Probability estimation

All together, we measured Mutual Information for 90 schemas (180 items)

- unsmoothed frequency counts from FrWaC Baroni et al. (2009) (1.6 billion tokens from the .fr domain of the Internet)
- window for cooccurrence measures: 2×5 tokens
- multiword expressions: lexical head
- lemmas rather than word-forms (except in a couple of exceptional cases)

We used a fixed corpus and not the Google search engine because the counts on Google are not stable in time and also optimization algorithms could alter the counts (Lapata and Keller, 2005).
Results (table)

<table>
<thead>
<tr>
<th>Threshold</th>
<th># Items</th>
<th>Accuracy</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>131</td>
<td>0.55</td>
<td>0.40</td>
</tr>
<tr>
<td>Δ 0.5</td>
<td>95</td>
<td>0.59</td>
<td>0.31</td>
</tr>
<tr>
<td>Δ 1.0</td>
<td>73</td>
<td>0.62</td>
<td>0.25</td>
</tr>
<tr>
<td>Δ 1.5</td>
<td>59</td>
<td>0.64</td>
<td>0.21</td>
</tr>
<tr>
<td>Δ 2.0</td>
<td>38</td>
<td>0.68</td>
<td>0.14</td>
</tr>
<tr>
<td>Δ 2.5</td>
<td>30</td>
<td>0.70</td>
<td>0.12</td>
</tr>
<tr>
<td>Δ 3.0</td>
<td>25</td>
<td>0.68</td>
<td>0.09</td>
</tr>
<tr>
<td>Δ 3.5</td>
<td>18</td>
<td>0.67</td>
<td>0.07</td>
</tr>
<tr>
<td>Δ 4.0</td>
<td>15</td>
<td>0.60</td>
<td>0.05</td>
</tr>
</tbody>
</table>

- ‘# Items’ indicates the number of items that the method could answer to
- ‘Accuracy’ is the accuracy of the method on the items that could be answered
- ‘Coverage’ gives the accuracy on the 180 items we tried to solve with MI
‘Success’ is the theoretical success rate that would obtain a strategy consisting in using mutual information for the questions for which the Δ is over the threshold, and replying by chance for the other questions.
Introduction
- Winograd Schemas
- Test for Artificial Intelligence
- State of the Art

Collection of French Schemas
- Project
- Adaptation
- Method

Test of Google-Proofness
- Google-Proofness
- Mutual Information
- Applicability of the measure
- Probability Estimation
- Results

Conclusion
Discussion

- answering at random would give an accuracy around 50%
- accuracy with no threshold not satisfactory (55%)
- accuracy reaches 70% with Δ 2.5 but for less than 15% of the items.
- using the best accuracy does not help the overall success rate to pass 55%

- As a whole, our collection is (in a sense) Google-proof.
- No claim about more sophisticated methods.
- Post hoc exploitation: remove schemas that are too easy
The audience refused to thank the speakers, they were too \langle\textit{bored/boring}\rangle.

Acknowledgments:

Sarah Ghumundee,
Biljana Knežević,
Nicolas Bénichou
3 anonymous reviewers
École Doctorale Frontières du Vivant — Programme Bettencourt

http://www.llf.cnrs.fr/winograd-fr
Acknowledgments

References I

Obvious for humans?

Bender (2015) found a 92% success rate for humans on the English collection. See also:

- a subset of our schemas was used by psychology students for a self-paced reading experiment:
 replication of previous findings about language specific preferences in anaphora resolution (Hemforth et al., 2010)
- the whole set has been tested for human performance:
 - online questionnaires (Ibex Farm)
 - 22 participants recruited through RISC platform
 - removed data points where RT over 10″ (and under 200 ms)
 - overall performance: 92.3% success rate
 - per item analysis in progress
Although we translated our schemas from the English collection of Levesque et al. (2011) that were at least partially checked to be Google-proof:

“In some cases where we were uncertain whether the schema was Google-proof, we have done some experiments with searches using Google’s count of result pages. These counts, however, are notoriously unreliable (Lapata and Keller, 2005; Davis, 2015), so these “experiments” should be taken with several grains of salt.”

... we wanted to investigate further and more systematically whether obvious statistics does not help to solve our items. We therefore defined a simple statistic test based on Mutual Information.
(17) Many **astronomers** are engaged in the search for distant **galaxies**. They are spread all over the **universe**. What are spread all over the **universe**?

(18) Pendant la tempête, **l’arbre** est tombé et s’est écrasé sur **le toit** de ma maison. Maintenant je dois **le** 〈déplacer/réparer〉. Qu’est-ce que je dois 〈déplacer/réparer〉 ?

During the storm, the tree fell and crashed on the roof of my house. Now I have to 〈remove/repair〉 it.
Examples of spe/alt pairs

(19) J’ai sorti le portable de mon sac pour qu’il soit ⟨plus accessible/moins lourd⟩.

(20) Le frère jumeau de Joël arrive toujours à le battre au tennis, même s’il a suivi deux ans de cours en ⟨moins/plus⟩.

(21) Sandrine a appris que le fils d’Anne avait eu un accident ⟨donc/car⟩ elle l’a prévenue.

(22) Les pompiers sont arrivés ⟨avant/après⟩ les policiers alors qu’ils venaient de plus loin.

(23) Fred est le seul homme encore vivant à se rappeler de mon arrière grand-père. C’⟨est/était⟩ un homme remarquable.