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Abstract
The target article proposes to use neural networks to model learning within existing grammati-

cal frameworks. This is easier said than done. There is a fundamental gap to be bridged which does
not receive attention in the article: how can we use neural networks to examine whether it is possi-
ble to learn some linguistic representation (a tree, for example), when, after learning is finished, we
cannot even tell if this is the type of representation that has been learned (all we see is a sequence of
numbers)? Drawing a correspondence between an abstract linguistic representational system and
an opaque parameter vector which can (or perhaps cannot) be seen as an instance of such a rep-
resentation is an implementational mapping problem. Rather than relying on existing frameworks
that propose partial solutions to this problem, such as harmonic grammar, I suggest that fusional
research of the kind proposed needs to directly address how to “find” linguistic representations in
neural network representations.1

Keywords: neural networks; grammatical formalisms; cognitive science; implementational
mapping; generative grammar
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1. INTRODUCTION

On the same list that ranked Syntactic Structures as the number one most influential
twentieth-century work in cognitive science, the number two work is David Marr’s Vision (Marr
1982). Marr proposed that the only way to achieve an understanding of complex information
processing systems (like those found in the brain) is to simultaneously analyze them at three
levels of analysis: a computational level, where one formally defines the problem the system is
solving, specifying which inputs must map to which outputs; an algorithmic–representational
level, where one spells out a method for arriving at an output, given a particular input—a formal
hypothesis about how the system encodes information, and how it manipulates it; and an
implementational level, which details the physical system itself. Generative grammar standardly
proposes to analyse language cognition at the first two levels, leaving the problem of how such a
system would actually be implemented in the brain open—leaving open, thus, the nature of the
link between the algorithmic–representational theory and the physical implementation.
Specifying and evaluting any such link is a difficult problem in itself—call it the
implementational mapping problem.

Pater’s proposal for closer interdisciplinary integration between generative grammar and
neural network research immediately runs up against the implementational mapping problem.
Neural network models—while not brains, or even brain models—are complex systems whose
behaviour cannot be understood just by inspecting their internal state. On the other hand,
representations proposed in linguistic theories are designed so that human researchers can write
and read them—hypotheses of the kind that Marr had in mind for his intermediate level, explicit
enough to be programmed on a computer, yet high-level enough to be understood. They are not
directly comparable with the internal states of neural networks, which are simply long sequences
of numerical parameters. “When neural network modelling is integrated with grammatical
formalisms,” writes Pater, “we may be able to go further in assessing the extent to which
grammatical representations can be learned from experience” (emphasis mine). The sketch Pater
outlines in Fusion is missing a component critical to an integration of this kind. If the network is
seen as the implementation, then a fundamental part of the work of “integration” with
grammatical formalisms consists in solving the mapping problem.

In principle, feedforward networks can implement any grammar, or any formal representation,
or approximate it with arbitrary precision—with the basic units of representation implemented as
vectors in some numerical parameter space, and with operations manipulating these
representations corresponding to information flowing through the network, changing its state
(Hornik 1991; Leshno et al. 1993; Lin et al. 2017). This makes them attractive for simulating
grammatical learning. But doing so first requires answering some fundamental questions:

• Given a trained network, does it make use of representations consistent with a linguistic
theory T? (Can we, for example, see its representations as trees: Smolensky 1988b; Pollack
1988?) Or is such an interpretation provably untenable?

• …or has the network approximately arrived at a solution within the scope of T—for
example, one for which a subset of the representations can be seen as trees?

• Can all possible parameter settings learnable by a given class of network N (constrained to
have a certain architecture, with a certain type of units) be seen as licit grammars in theory
T? In other words, is N constrained to learn within theory T (or come close)?
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• Conversely, can all grammars in T be implemented as networks in T?

Only when we know how to answer these questions can we address the question the target
article hopes to be able to answer by fusing the two research programs: given a class of networks
N that has the capacity to go beyond some theory of possible grammars T, is an arbitrary network
of this class guaranteed to learn a grammar in T if we give it realistic data? Or does it require
special evidence, inaccessible to the child, in order to be constrained to grammars in T? This
would allow us to conclude something useful: that the learner must have mechanisms to constrain
it to T (N is too broad), or that the theory of learning from data is wrong, or that the theory of
grammar is wrong (and should maybe allow the alternative solutions available within N). But, to
arrive at these answers, we must have an implementational mapping between network and
formalism.

2. THE IMPLEMENTATIONAL MAPPING PROBLEM

When a human brain is cut open, trees do not come fanning out, but this does not this mean
that syntactic theory is wrong. This kind of observation is the essence of Marr’s methodological
program. Even if we had access to physical state of every cell in the brain, we would need to do
work to understand whether their activity could be seen as building trees, or something rather
different. Before we can validate an abstract theory of how the system might work, we need some
systematic theory of how the abstract elements and operations map to the physical
implementation. Equally, if we wish to simulate learning of generative grammars with neural
networks as “hardware,” particularly in the case where we do not force the networks to learn
specific kinds of representations, we need some system for linking an abstract formal theory to
the networks’ representations. This implies making the formal theory explicit—and noting which
elements of it are there to describe how the system does its work, rather than just characterizing
what it does—and then articulating how we would recognize what the network is doing.

To see the general problem, take the artificial example of addition of natural numbers.
Addition is a function that applies to two natural numbers, and results in some other natural
number. Physical implementations of addition include the proper use of an abacus, standard
pencil and paper column-based arithmetic with carrying, or a spreadsheet taking inputs with a
keyboard and giving outputs on a computer monitor. For each of these very different systems, we
can say that addition is what they do. We can only say this with certainty, however, once we
characterize exactly what addition is. A computational-level description of a system
implementing addition would be any complete, accurate description of the behaviour of the
two-place function add(·, ·)—what kinds of inputs does it take, and what is the relation between
its inputs and its outputs? One set of axioms for arithmetic is due to Giuseppe Peano (given in
Mendelson 1997), and asserts, for example, that the set of manipulated elements must contain a
special element called 0, that there be a function called successor(x) which always yields an
element distinct from x, that add(x, y) yield x when y = 0—and, in all other cases,
add(x, successor(y)) = successor(add(x, y))—along with several other details. When these
axioms are put together, they have as logical consequences that the inputs must be a system
equivalent to natural numbers, and specify uniquely what the output of any addition must be.

The physical system itself will be quite far removed from any computational-level description.
A partial understanding of how the system works on a purely physical level might be enough to
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verify whether a hypothesis about what the system is doing is correct, but Marr proposes that, to
meaningfully link between a computational-level description and a physical implementation, a
detailed, abstract hypothesis is necessary, which goes beyond describing what a system does, to
making a claim about how it does it. Marr calls this an “algorithmic–representational”
description. Taking the example of addition: how are numbers represented? Possibilities might be
decimal (successor(4) = 5), binary (successor(10) = 11), unary (successor(||||) = |||||), or
Roman numerals (successor(IV) = V). Representational systems can be spelled out in formal
detail. A unary encoding, for example, contains a basic element that we write |, is such that every
representation consists only of some number of |’s, and (drawing the link to the
computational-level description) is such that longer strings always represent larger numbers and
conversely (contrast this with a decimal system, in which “41” is not longer than “14”). In concert
with formal definitions of “sequence” and of “longer,” this is enough to specify that a
representation is unary. Then, we need an algorithm: a set of implementation-neutral steps for
manipulating representations which yield results consistent with the computational-level
description of the system. The familiar column-wise addition with carrying that we learn in school
can be spelled out explicitly, for example.1 The characterization of a representational system and
an algorithm must provably give results consistent with the computational-level constraints.

Thus, given a hypothesis about what the system does, and how, the implementational mapping
is a theory of how I recognize what the system is doing when I observe it operating.2 If you have
been to school in the West, you can probably quickly tell when addition is what’s being done in a
sequence of scribbles on paper. This background allows you to map numbers (the basic elements
which form the inputs and outputs of addition) onto marks on paper, and to recognize the steps of
a method for adding numbers together using these marks. Other systems implementing addition
might be completely opaque—impossible to recognize as implementing addition—even to an
adult with a solid knowledge of how addition works: a person verbally describing the steps of
adding two numbers in a foreign language; or an undeciphered clay tablet showing calculations
(perhaps using letters of the alphabet as numbers); or a machine that takes two sounds as input,
and, if both are pure tones, outputs a new pure tone with a frequency equal to the sum of the two.
Some hypothesis is therefore needed about how the elements of the algorithmic–representational
description map to the physical reality. A system implementing unary encoding (fingers, sticks,
coins) would not need to contain actual physical lines written |, but it would need to at least be
coherent with the representational constraint that there be a one-to-one mapping between the
“size” of the representation and the number represented—the relevant “size” would not need to be
the physical volume, but there would need to be some such coherently definable physical

1The choice of algorithm and of representation are not independent: column-wise addition will
work with decimal, binary, or (with some contortions) unary representations; it will not work with
Roman numerals. And, although it can be made to work with unary representations, it is not the
algorithm one typically uses. The usual method is simple concatenation: |||| + ||| = |||||||. But,
much to the frustration of young children everywhere, concatenation does not work as a method
for adding numbers in decimal representation: 4 + 3 does not equal 43.

2This should be kept distinct from a theory of the physical system itself. A complete understand-
ing of the system implies having such a theory—and constructing an implementational mapping
does too—but one could come to fully understand where the beads in an abacus can go without
understanding why they go there.



5

quantity—and this would not exist for all systems: it exists in the addition-of-pure-tones system
(the frequency) but not in the abacus (there is no simple physical measure by which the beads
representing 14 on a base ten abacus have ”less” of it than the beads representing 41). The steps
in the algorithm, too, must be mapped to changes of state in the physical system, in some way.
Drawing these links explicitly is what is meant by an implementational mapping.

Marr’s approach thus gives us two insights that are critical to Pater’s proposed project of
fusion. First, “how” is not “what.” The assertions that are meant to be taken at the
algorithmic–representational level must be cleanly distinguished from the computational-level
description. The “what” theory of addition contains “elements” and “operations,” too, but the
point of having two levels of description is that only the algorithmic–representational description
needs to correspond to the physical reality. For example, the function successor(x) exists at the
computational level only: there does not need to be a basic physical operation “add one” in order
for a system to be correctly described by these axioms. But a system implementing the algorithm
of adding in columns would need to have a physical change of state corresponding to carrying.
The implication of this is that observing that a network has the same behaviour as what is
predicted by some linguistic analysis is not the same as asking whether it can learn grammatical
representations. In this context, it is worth explicitly drawing the comparison between Marr’s
program and the reflection about the cognitive reality of grammars that happens in generative
linguistics. We usually tell students that the series of steps carried out on paper to derive a
sentence, or a phonological surface form, are not supposed to be a theory of the steps carried out
in the mind—no theory of the algorithm is implied by the theory of the grammar—but that the
representations (trees, feature bundles, and so on) are supposed to be cognitively intepreted; the
derivational steps are interpreted as a means of stating which representations are licit structural
descriptions. Chomsky (1995) best articulates this interpretation: in his criteria for descriptive
adequacy of grammars characterizing competence, he includes the criterion that the grammars
yield psychologically correct structural descriptions (representations)—not merely the
(computational) criterion that they pick out all and only the grammatical sentences of the
language. He does not, however, require that a grammar give us any notion of how parsing is
done on-line (an algorithm).3 Under this view, the “operation”merge(·, ·) is an implicational
relation in a system of representations (if X and Y are representations, then so ismerge(X,Y )),
not a theory of a real-time processing step. The theory, under this view, is not purely
computational-level (this would only be concerned with defining the correct set of utterances),
nor a complete theory at the algorithmic–representational level (because this would also include
proposals of algorithms for generation and recognition). On the other hand, some researchers
have interpreted derivational steps as making empirically testable assertions about how structure
is built up in time (Miller & Chomsky 1963; Berwick & Weinberg 1984; Phillips 1996), while
other authors have suggested that the only reasonable place to situate formal grammars is at the
computational level, specifying the function computed by the mind, and nothing more (Matthews
1991). Under that view, two theories that predict the same set of possible words, sentences, or
sound–meaning pairs, would be equivalent; their rules, representations, and derivations are purely
instrumental. Regardless of how we use generative grammars, the spelled-out reflection is what is
important. For doing everyday linguistics, it may not be all that important to regularly draw up
the list of which elements of the formal theory are meant to be interpreted as “real” and which not.

3See pp. 17–18 of Chomsky 1995
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This exercise is critical for doing learning in neural networks to see if they learn “the same thing”
as we have proposed in some theory, because it serves to explicitly delimit the success criterion.

Second, of course, Marr’s program asks us to spell out the details of the “how do I recognize
it” theory, making it clear that this is not trivial. The opacity of neural network representations
poses a central challenge to any attempt to use them to implement grammars.

3. IMPLEMENTATIONAL MAPPING AND THE PROJECT OF FUSION

The target article points to two existing points of convergence between neural network
research and generative grammar. First, harmonic grammar, a fully-developed linguistic
theoretical framework based on constraint interaction, and an existing connectionist–generativist
“fusion”; second, a set of studies testing recurrent neural networks trained on corpora to see
whether they yield human-like judgments. The first is an implementational mapping for
grammatical computations which is problematic in that it is very limited; the second does not
evaluate anything at the algorithmic–representational level.

Harmonic grammar was born out of a desire to come up with an abstract formal theory for
understanding the operations of neural networks: an implementational mapping, with neural
networks seen as the implementation of an abstract formal theory. The theory could then be used
by linguists, with the knowledge that there exists a way of translating linguistic analyses into
learned network parameters. The system rests on two formal mechanisms. The first, tensor
product representations, provides a way of mapping between formal representations and
numerical vectors. The second, harmony theory, provides a way of formally translating between
soft constraint optimization and certain kinds of transformations that neural networks can do over
tensor product representations.

Harmony theory maps a network with two layers to a grammatical computation. The first
layer is a representation vector, linked to the second layer, which might be called a constraint
satisfaction vector (Smolensky (1986); Legendre et al. (1990a); Legendre et al. (1990b)). Each
unit in the second layer represents a different constraint, and has a value, calculated from the first
layer in the usual way in multi-layer perceptrons: by taking a linear combination of values and
passing them through an activation function. The constraint units in turn have weights, which (by
again applying the standard linear calculation) allow us to arrive at a value (“harmony”)
interpretable as a degree of acceptability. The constraint satisfaction vector is interpretable and
manipulable by a linguist, giving a simple implementational mapping for a part of the
grammatical calculation. By “calculation” is meant the deduction of unknown structure:
calculating interpretations from surface forms (via phonological and morpho-syntactic structure),
or calculating surface pronunciations in the other direction. However, harmony theory requires a
rather uncommon type of network. The network needs to do computation by “optimization,”
rather than using a series of feed-forward multiplication/addition steps. Both the known and
unknown representations must form part of the first layer, in which case, grammatical
computation can be done by holding the known elements constant, and doing optimization over
the unknown representation so as to maximize harmony. There is a class of networks (including
Hopfield nets and restricted Boltzmann machines) with this “fill in the blank” architecture, in
which a single layer contains both observed and hidden quantities, but such architectures are very
rare in practice. In reality, virtually any representation one can find in a modern neural network is
the result of doing a series of linear transformations followed by various types of non-linearities,
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using weights that are learned and fixed once during training. Harmony theory does not yield an
implementational mapping to a constraint-based grammar in such a case.4

This major architectural difference means that harmonic grammar per se currently has little to
offer in terms of practical fusion. Indeed, as Pater points out, in practice, HG learning is almost
always modelled in the case “when the structure of the learning data is supplied in whole—when
all the constraint violations of each learning datum are known”—that is to say, when only the
final constraint layer is being modelled, and the weights that make the link between
representation and constraint violations are abstracted away from. In this case, the model has
been simplified past the point where it can even be called a neural network. It is no longer a
multilayer perceptron, but simply a single-layer perceptron—a type of generalized linear
model—which is what allows for the use of the wide range of off-the-shelf learning algorithms
alluded to in target article. Omitting the representation from consideration means that little rests
of the big, fusional questions put forward in the introduction. All that is being learned by the
“network” is a set of weights on constraints; no questions about the learnability of
representations, or the constraints themselves, are being addressed by a neural network.

Tensor product representations, a family of implementational mappings for representations
(rather than for grammars and grammatical computation), are more generally applicable. After
decomposing the representational system axiomatically into its essential elements (“roles”), and
the possible values these elements can take on (“fillers”), the mapping hypothesis is that fillers
and roles each correspond to possible vectors in the representational space of the network; that
fillers are matched to roles using a simple algebraic multiplication operation; and that the
resulting elements are combined using vector addition. Complex hierarchical structures can be
represented in this way, because a filler vector need not be an atomic element of the
representational system (Smolensky 1986; Smolensky 1988a; Smolensky et al. 2014).

This implementational mapping scheme is one of the things that ensures the smooth operation
of harmony theory. The grammars which come out of applying the isomorphism just discussed to
two-layer neural networks are only workable if the input layer is coded in a “localist” fashion, that
is, with individual nodes or sets of nodes corresponding to individual elements of the
representation. Tensor product representations, on the other hand, can yield “distributed”
representations. In distributed representations, individual nodes are not identifiable with
representational elements: in the worst case, all nodes may need to be examined in order to
decode any part of the representation. The existence of the tensor product mapping scheme means
that one can always find a localist re-coding for any given representation. However, tensor
product representations are completely independent of harmony theory, forming a broad family of
implementational mapping theories for representations. Pater’s commentary discusses a case of a
question–answer system in which a tensor product structure is enforced during network training
(Palangi et al. 2017), but with no interpretation of the final weights as a harmonic grammar. One

4An additional, and important, part of the harmonic grammar framework, is the idea that tradi-
tional grammatical representations, which are discrete, are approximations of real linguistic knowl-
edge, which can have states “in-between” two discrete representations; see Smolensky & Goldrick
(2016), for example. I gloss over this part of the discussion, as it is not immediately relevant to
understanding the relevance of the implementational mapping problem. This is one sense in which
a network can fail to contain abstract linguistic representations, but can contain representations
which are “close,” as alluded to in the introduction.
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could easily imagine going beyond enforcing structure, to probing trained networks to understand
whether they contained a tensor product encoding of some grammatical representational
system—in order to attempt to address the fundamental questions outlined in the introduction.5

The second type of fusional research cited is a set of studies investigating whether recurrent
neural network language models trained on corpora have human-like judgments for agreement
(Linzen et al. 2016a). I point out here only that these studies, while fundamentally important, do
not permit us to draw the kind of conclusions outlined in the introduction. Because the focus is
restricted to whether the networks tested match human judgments—essentially, whether they
generate the correct set of strings, plus some associated gradient degree of acceptability/set
membership—these studies can inevitably only tell us about the accuracy of the models at the
computational level.

To make this point more clearly, consider the recent study of Gulordava et al. (2018), a
follow-up to the tests of agreement in RNNs cited in the target article, using a different trained
model (and improving the tests). In contrast to the model of Linzen et al., (which the authors also
re-test with their new items), the paper finds that the new RNNs pass the agreement tests, even at
long distances. The authors leave the question open as to what the crucial difference between the
two models is that allows one to show human-like behaviour, while the other fails. It is a critical
question, in light of the fact that neither model is trained with any explicit bias for hierarchical
structure. But it is not the same as the question the target article raises in this context: “assessing
the extent to which grammatical representations can be learned from experience.” That question
relies critically on knowing something not only about what the system does but how it does it.
The fact that the system shows the correct behaviour does not have any straightforward
implication about the nature of the representations it is using to do so. (Chomsky’s (1975)
informal reflections about the “structure”-dependence of agreement merely assert that
hierarchical structure serves as the basis for a better hypothesis than a purely linear rule, not that
no alternative representation could support the correct mapping; in this regard, this early
discussion of the learning problem posed by agreement is representative of later re-assertions of
it.) To see whether the better-performing system has really learned to code something we would
call syntactic hierarchy, we would need to address the implementational mapping problem for this
type of network. We will never be able to use neural networks to assess whether it is possible to
learn (a particular type of) grammatical representations from (a particular type of) data, if we do
not have a way of assessing whether it has learned those representations.

4. HOW TO PROCEED

Tensor product representations represent one framework for stating mapping hypotheses
between neural network representations and formal representational theories, which allow for

5One could also imagine attempting to decode higher layers of a feed-forward or recurrent net-
work in such a way as to allow the interpretation of these layers as making up parts of a constraint
satisfaction vector, as in harmonic grammar. This would still not permit the complete implementa-
tional mapping found in harmony theory, however, as this would imply outputs and hidden struc-
ture that are calculated in a fundamentally different way, by optimization, rather than the standard
feed-forward mechanisms.
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mappings between network weights and complex hierarchical representations. There are other
approaches to “decoding” the action of connectionist networks in terms of some interpretable
“model” of their behaviour. The paper by Pinker & Prince (1988), responding to the connectionist
past-tense inflector of Rumelhart & McClelland (1986), did not provide any reusable
methodological tools for understanding other neural network models; it did, however, provide a
long exegesis of the behaviour of a single network, providing proof that such networks could be
“understood,” and did not need to remain black boxes. Properly within the realm of neural
network research, a number of techniques have been developed for assessing the relative
importance of the different input features in determining the output; relatedly, starting in the early
1990s, a number of “rule extractor” techniques were developed that could be used to turn the
parameters of neural networks into sequences of rules operating on the (possibly continuous)
input space of the network (sometimes yielding only approximations to the network’s behaviour).
However, none of these techniques are applicable to the problem of extracting sequences of exact
rules from the types of network architectures in common usage today (Taylor & Darrah
2005; Özbakır et al. 2010; Augasta & Kathirvalavakumar 2012).

One of the reasons that the problem of decoding neural network information processing has
seen a sharp uptick in interest in recent years is probably the impact of the “analogy” result of
Mikolov et al. (2013). The authors demonstrated that the representation of king, learned by a
neural network solely on the basis of sequential relations in natural text corpora, stood in the same
geometric relation to the representation of queen as man stood to woman, and, more generally,
that representations in the system approximated an implicit semantic/syntactic feature structure.
The methodology used to arrive at this conclusion provides a method for assessing, given a
specific hypothesized set of binary featural contrasts, whether one network approximates them
better than another. The method has been applied, with some variations, to a host of other types of
representations since (Gladkova et al. 2016; Dunbar et al. 2015; Linzen et al. 2016b; Chaabouni
et al. 2017). The original method has been criticized as giving erroneous results in various cases,
and for making narrow and unmotivated assumptions about the form of the mapping between the
network’s representations and the hypothesized feature system (Levy & Goldberg 2014; Linzen
2016), but it provided both a compelling result and a reminder of a compelling idea: there are
ways of interpreting neural network representations as respecting the structure of some abstract,
and understandable, theory.

A different line of research is represented by the method of Kriegeskorte et al. (2008) for
assessing isomorphisms of two representational systems. This method is, in principle, applicable
to the implementational mapping problem, but it has almost exclusively been used for comparing
neural network representations against equally opaque data from brain imaging (seen as
“representations” in a broad sense).

5. CONCLUSION

The target article insists on the immediate importance of a research program that goes back to
the early days of connectionism (Fodor & Pylyshyn 1988; Smolensky 1988a; McCloskey 1991):
using neural networks to advance, not as an alternative to, abstract linguistic theory. This is
indeed a promising research direction whose time has come. However, before an interdisciplinary
research program of the kind envisioned by Pater can be made real, a very concrete, broad and
well-thought-out set of formal methodologies is need for assessing how well a particular neural
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network aligns with a linguistic representational theory. Without careful reflection on what it
would mean for a grammatical hypothesis to be “instantiated” in a neural network, and ways to
understand what kind of alternative representations a network model is proposing to us, we will
be lost in this endeavour.

The above discussion should not be taken to suggest that there is a general, universal solution
to the implementational mapping problem. Suppose, for example, that, in follow-up research on
how RNNs learn agreement, we wanted to give relative scores to two different networks, to assess
which one was coming closer to having learned hierarchical structure, in some well-defined
sense. Mikolov et al’s “analogy” approach works by assessing whether minimal representational
oppositions, such as those between king and queen, or man and woman (assuming that these
differing minimally in some representation of semantic gender), can be captured by doing
arithmetic addition and subtraction operations (does king - queen + man equal woman?). Tensor
product representations make a similar assumption. Both assume a specific class of
implementational mappings wherein the structure of the network’s representational space is
necessarily one in which addition of two representations is the network’s way of composing these
representations. This may be reasonable in specific types of networks, but it is not guaranteed to
be inappropriate: a network might “contain” binary semantic features in some different sense,
using a structure based on something other than addition.

We already know from neuroscience that there is no single, universal way of “interpreting”
real neurons: gerbils and chickens’ neural systems for sound localisation in the horizontal plane
in front of the body can be described in the same algorithmic-representational terms—calculating
inter-aural time differences—but this information is coded in neural firing in a fundamentally
different way across the two species (see Ashida & Carr 2011). Any attempt to “find” inter-aural
time differences in gerbils under the expectation that it should be encoded in the same way as in
chickens would lead to a negative result (they are coded using neural firing rate in mammals, but
not in birds). This would lead to the false conclusion that the two species’ brains perform
fundamentally different operations, while, in fact, they perform they same operations in different
ways. The problem is not insurmountable, but simply needs to be taken into account: any
assessement of the congruence between an opaque (neural network) representation and a
high-level formal theory is necessarily and inextricably bundled with the assessment of the
validity of the mapping hypothesis.

The early work on linking neural network representations with more understandable views of
them as abstract rules and representations was extremely important, and has advanced far too slowly
in the intervening years. Furthermore, it still not always clearly distinguished from the problem
of testing whether the networks get the right answer. This lack of centrality shows in the target
article, which proposes extensive fusion, but does not isolate implementational mapping as a critical
component, or even as a research problem. Given the complexity of the problem, I would suggest
that implementational mapping represents, in fact, the bulk of the work of fusion between formal
linguistic theory and neural network research.
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