
1

From Dialogue to Multilogue via Type
Theory

Jonathan Ginzburg

Department of Computer Science

King’s College London

Strand

London WC2R 2LS

ginzburg@dcs.kcl.ac.uk

2

Part 0

Overview

3

Main Issues

• How to scale down Dialogue to Monologue and up to Multilogue?

—Dialogue: querier/responder

—Monologue: self answering

—Multilogue: multiple discussants

• Basic idea: compositionally break down interaction protocols
using conversational rules.

4

• Use Type Theory with Records (TTR) (Cooper, 2005) to
formulate conversational rules.

• Type Theory with Records: a framework that allows

—Rich ontologies à la Situation Semantics

—Dynamic semantic techniques à la DRT

—Constraint-based Grammar à la HPSG

—Dialogue Analysis à la KOS

• TTR notationally similar to Type Feature Structures, but
substantively different

—TTR has token type distinction: crucial for dealing with
grounding/clarification potential

—TTR contains λ-calculus: crucial for doing semantics

5

Structure of Talk

• Type Theory with Records: the basics

• Ontology in Constructive Type Theory:

—–Semantics

—–Grammar

• Decomposing protocols into conversational rules

• Scaling down to monologue

• Some principles for scaling up to Multilogue

6

Part 1

Type Theory and Semantic Ontology

7

Records and Record Types

• A record is is an ordered tuple of the form (1), where crucially
each successive field can depend on the values of the preceding
fields:

(1) a.

li = ki

li+1 = ki+1 . . .

li+j = ki+j

b.

x = a

y = b

prf = p

8

Records and Record Types

• Together with records come record types. A record type is simply
an ordered tuple of the form (2), where again each successive
type can depend on its predecessor types within the record:

(2)

li : Ti

li+1 : Ti+1 . . .

li+j : Ti+j

9

Records and Record Types

• Record types allow us to place constraints on records: the basic
typing mechanism assumed is that a record r is of type RT if all
the typing constraints imposed by RT are satisfied by r.

• If a1 : T1, a2 : T2(a1), . . . , an : Tn(a1, a2, . . . , an−1),

the record:

l1 = a1

l2 = a2

. . .

ln = an

is of type:

l1 : T1

l2 : T2(l1)

. . .

ln : Tn(l1, l2, . . . , ln−1)

• Crucially, not all the fields in r need to be ‘disciplined’ by RT .

10

Records and Record Types

• The record

runner = bo

time = 2pm, Dec 20

place = batumi

is of the type

runner : Ind

time : Time

place : Loc

• and of the type

runner : Ind

time : Time

and of the type

[
runner : Ind

]
and

of the type
[]

, the type that imposes no constraints.

11

Ontology in Type Theory

• Type Theoretic World (Cooper 2004, simplified):

TYPE = 〈 Typen, BasicType, ProofTypen, RecTypen, 〈A,Fn〉, 〉
• Typen is the set of types of order n, built up recursively using

type construction operations.

• BasicType: IND, TIME, LOC, LEX . . .

• ProofTypen (“interface with external reality”): tuples consisting
of entities [from the model] and predicates.

• RecTypen: set of records, record types defined with respect to a
set of objects used as labels.

• 〈A,Fn〉 is a model (assigning entities to BasicType, and tuples to
ProofTypen).

12

Ontology in Type Theory

• The universe is connected to the real world via the proof types
and the model.

• The model grounds the basic types.

• From these beginnings, arise structured objects via two recursive
mechanisms: type construction and record cutting.

13

An event

• Proof types play a role akin to (atomic) situation types (SOAs)
in situation semantics, serving as the smallest particles of
external reality.

• Combining these into record types allows us to form ‘molecules’
of external reality.

• Assuming the existence of basic types TIME and LOC(ation),
one could offer (3) as the most rudimentary notion of situation,
namely that it is a record which carries information about
spatio-temporal extent:

(3)

SIT =def

time : TIME

loc:LOC

14

An event

• The type of a situation with a woman riding a bicycle would then
be a record

. . .

x = a

c1 = p1

y = b

c2 = p2

time = t0

loc = l0

c3 = p3

. . .

of type

x: IND

c1: woman(x)

c2: bicycle(x)

y: IND

time : TIME

loc:LOC

c3: ride(x,y,time,loc)

such that: a:IND; c1: woman(a); b: IND; p2: bicycle(b); t0 :
TIME; l0 : LOC;p3: ride(a,b,t0,l0);

15

• A theory of situations requires various topological, physical and
other constraints to be imposed on the universe of records, as
explained in more detail by Cooper (RL&C, 2005).

16

Type Constructors

• In order to do semantics, we need to have available various type
construction operations, which allow for a recursive building up
of the type theoretic universe.

(4) a. function types: if T1 and T2 are types, then so is
(T1 → T2), the type of functions from elements of type T1

to elements of type T2. f:(T1 → T2) iff the domain of f is
{a|a : T1} and the range of f is a subset of {a|a : T2}

b. The type of lists: if T is a type, [T], the type of lists
each of whose members is a : T, is a type.

c. The unique type: if T is a type and x : T , then Tx is a
type. a : Tx iff a = x.

17

Simultaneous abstraction with restrictions

• Function types allow one to model abstraction. Given the
existence of record typing, this allows for a simple modelling of
simultaneous, restricted abstraction— multiple (incl none)
entities get ‘abstracted over’ simultaneously, while encoding
restrictions.

• The simultaneous abstract in (5a) can be modelled as the
function in (5b), which has the type in (5c):

(5) a. λ{x1, . . . , xk}φ(x1, . . . , xk)
[ψ1(x1, . . . , xn1), . . . , ψk(xk, . . . , xnk)]

18

b.

x1 = a1

. . .

xk = ak

c1 = p1

. . .

ck = pk

7→ φ(a1, . . . , ak)

c. r :

x1 : T1

. . .

xk : Tk

c1 : ψ1(a1, . . . , an1)

. . .

ck : ψk(ak, . . . , ank)

→ φ(r.x1, . . . , r.xk)

19

Simultaneous abstraction with restrictions

• A simplified analysis of the meaning of the sentence ‘I see Bo’:

(6) a. context-assgn: α =

x : Ind

t : Time

p1: speak(x,t)

y: Ind

p2: named(Bo,y)

b. ρ:[
cont : see(context-assgn.x,context-assgn.t,context-assgnr.y)

]

c. context-assgn:α→ ρ: (the type of) functions from records
of type α into records of type ρ.

d. A function of this type maps records of the form

20

. . .

x = x0

t = t0

p1 = c1

y = y0

p2 = c2

. . .

where x0 : Ind,t0 : Time, c1: speak(x0,t0), y0: Ind, and
c2: named(Bo,y0),

into a record of the type
[
cont : see(x0,t0,y0)

]

21

Vacuous abstraction

• A vacuous abstract is a constant function of some kind—where
implementation varies is the domain of the function.

• If we think of a unary abstract as involving a domain type with
one field which directly influences the ‘value’ of the function, a
binary abstract as one whose domain type contains two such
fields etc, then the domain type of a 0-ary type would simply be
the empty type [].

• hence: a 0-ary abstract a constant function from the universe of
all records (since every record is of the type [].).

• An alternative implementation is to arbitrarily choose some fixed
entity as the domain of vacuous abstracts. For instance, we could
take the domain type to be the type [][] whose sole member is [].

22

Propositions

• CTT offers a straightforward way for us to model propositions
using records. A proposition is a record of the form in (7a). The
type of propositions is the record type (7b):

(7) a.

 sit = r0

sit-type = p0

b.

 sit : Record

sit-type : RecType

• Truth:

(8) A proposition

 sit = r0

sit-type = p0

 is true iff r0 : p0

23

Logic

• We can now import an essentially intuitionist logic to underpin
the Boolean structure of our space of propositions.

• The following are the operations on types typically assumed in
CTT:

(9) a. ¬T0 is the type T0 → ⊥: the type ¬T0 is witnessed if one
can show that every situation of type T0 is also of type ⊥.

b. T1 ∧ T2: to show that T1 ∧ T2 is witnessed, one needs a
pair < p1, p2 > where p1 is of type T1 and p2 is of type T2.

c. T1 ∨ T2: a witness for T1 ∨ T2 is an entity p0 where p0 is
of type T1 or p0 is of type T2.

• Given this, simple to define the requisite Boolean operations on
propositions.

24

Questions as Propositional Abstracts

• Most NLP and AI researchers assume questions to be
λ-abstracts, i.e. they assume QPA.

• Most formal semanticists do NOT adopt QPA, since the early
1980s.

25

Resuscitating QPA

• QPA worth saving because it is the simplest theory that
simultaneously deals with the basic desiderata (short answers,
answerhood, question dependence) and is tractable.

• Simplicity: any theory of questions needs to associate an
abstract-like object with interrogatives to explicate the resolution
of short answers.

• Answerhood: Explicating answerhood involves a characterization
that utilizes in some form an abstract-like object.

• Tractability: QPA yields a transparently implementable theory.
In contrast, EAC theories that identify questions with partitions
of propositions (e.g. Groenendijk and Stokhof 1984 et seq.) are
intractable on their most transparent implementation (see e.g.
Bos and Gabsdil 1999).

26

Questions: some simple examples

• Given the existence of sitsemian-like propositions, a
proposition/situation-type-like distinction, and a theory of
λ-abstraction, it is relatively straightforward to develop a theory
of questions as propositional abstracts in CTT.

• A question will be a function from records into propositions:

(10) a. Did Bo run

b. CTT representation: maps records r : T0 =
[]

into propositions of the form

sit = r1

sit-type = [
c : run(b)

]

27

c. who ran

d. CTT representation: maps records r : Twho =
 x : Ind

rest : person(x)

 into propositions of the form

sit = r1

sit-type = [
c : run(r.x)

]

28

e. who greeted what

f. CTT representation: maps records r : Twho,what

=

x : Ind

rest : person(x)

y : Ind

rest : thing(x)

into propositions of the form

sit = r1

sit-type = [
c : greet(r.x,r.y)

]

29

Fixing the type of questions

• Recall that one of the stumbling blocks facing QPA as
implemented in the late 1970s was the the distinctness of types
associated with interrogatives.

• This problem does not arise here due to the following elementary
fact:

Fact 1 Function type subsumption

For any types A,A′, B if A v A′, then (A′ → B) v (A→ B).

• Now the types which can be associated with the functions in (10)
satisfy the subtype hierarchy in (11a).

• Given this and Fact 1, we get a correspondingly inverted
hierarchy for the function types in (11b):

(11) a. Twho,what v Twho v T0

b. (T0 → Prop) v (Twho → Prop) v (Twho,what → Prop)

30

• Can be generalized to accommodate arbitrarily complex
questions. (See Ginzburg, JoL&C (in press)).

• Alternative more general strategy use partial function spaces.

31

Part 2

Using Type Theory to do grammar

32

Doing HPSG in CTT

• The basic idea is very straightforward.

• Utterance types (aka signs) modelled as record types

• Utterance tokens—speech events— modelled as records, as
indeed are events in general (see Part 1)

33

A Simple Example

• My grammar fragment posits the
sound/syntax/meaning constraint in (12a) as a rule of English.
For a speech event se0, (12b), to be classified as being of this
type, the requirements in (12c) will need to be met:

34

(12) a.

phon : did jo leave

cat : S

c-params :

s0: SIT

t0: TIME

j: IND

c3: Named(j,jo)

cont = ([])

sit = s0

sit-type = Leave(j,t0)

: Questn

35

b.

phon = ph1

cat = cat1

c-params = ctxt0 =

. . .

s0 = sit0

t0 = time0

j = j0

c3 = c30

. . .

cont = cont0

c. ph1 : did jo leave; cat1 : S;
sit0 : SIT, time0 : TIME, j0 : IND, c30 : Named(j0,jo)

36

cont0 = ([])

sit = sit0

sit-type = Leave(j0,time0)

 : Questn

37

Not a notational variant of HPSGTFS

• HPSGCTT looks a lot like HPSGTFS .

• HPSGCTT directly provides semantic entities, whereas HPSGTFS

simulates them.

38

Some Basic grammatical types: referential NP

(13)

phon : jo

cat : N

cont : IND

c-params:

index = cont:IND

restr : Named(cont)(jo)

• The content is taken to be of type IND, i.e. cont will denote an
individual.

• A proper name generally varies with context (and is potentially
ambiguous or unknown to the addressee). Hence, it projects a
contextual parameter. This is represented by associating a type
with the c-params field.

39

• By using a manifest field, the index field is equated with the
value of the content. The restriction on the contextual parameter
is that this individual be named the name which is the type of
the phon field.

40

Some Basic grammatical types: instrans verb

• an auxiliary such as did—its content (ignoring tense) will simply
be an identity function:

(14)

phon : did

cat : V

cont = λp.p : Type

• runs is specified as a function that maps its
argument—coreferential with the subject—to a type that holds
of (an event) if that individual runs:

(15)

41

phon : runs

cat :

head : V

subj :

cat: syncat

cont: IND

cat : V

cont =
[
r:
[
runner= cat.subj.cont : IND

]]
.Run(r.runner) : Type

42

Some Basic grammatical types: Basic decl-cl rule

• The type decl-hd-subj-cl is the analogue of the standard ‘S → NP
VP’ rule. It builds a proposition whose situation field is
contextually provided and whose sit-type field arises by applying
the head-dtr’s content to the subj-dtr’s content.

(16) a. decl-hd-subj-cl =

43

2
66664

c-params:
h
s0:Rec

i

cont =

2
4sit = s0

sit-type = hd-dtr.cont(subj-dtr.cont)

3
5: Prop

3
77775

head : sign subj:sign

44

b. Jo visits Kim

45

2
666666666664

phon : Jo visits Kim

cont =

2
666666664

sit = s0

sit-type =

�
r:
h
visitor=cat.subj-dtr.cont : IND

i�

Visit(r.visitor,k)(
h
subj-dtr.cont = j

i
)

7→ Visit(j,k)

3
777777775

: Prop

3
777777777775

subj :
2
4phon : jo

cont = j: IND

3
5 hd-dtr:

2
66664

phon : visits Kim

cont =

�
r:
h
visitor=cat.subj-dtr.cont : IND

i�

Visit(r.visitor,k) : Type

3
77775

46

47

Some Basic grammatical types: Basic int-cl rule

• An argument-filling wh-phrase like who gets assigned a minimally
different lexical entry from a proper name:

(17)

phon : who

cat : N

cont : IND

func-dom :

〈
index = cont : IND

restr : person(index)

〉

• It has the same content type as a proper name, but does not
project a contextual parameter. The fact that the argument role
it is associated with will get abstracted over, i.e. will specify the
domain of a function, is captured by assigning it a non-trivial
value for the field functional domain (func-dom).

48

Some Basic grammatical types: Basic int-cl rule

• A ‘canonical’ wh-interrogative that involves a filler gap
construction, the filler being a dislocated wh-phrase. Here the
content arises by forming a function whose domain is the type
that constitutes the filler’s func-dom value and whose range is
the content of the hd-dtr:

49

(18) a. wh-ns-int-cl2
4cont = (

h
fill-dtr.func-dom.first

i
)hd-dtr.cont : Questn

filler.cont = slash.cont

3
5

filler : sign head : sign

50

Some Basic grammatical types: declarative fragments

• The following type allows us to build declarative fragments (e.g.
short answers).

• The content arises by predicating the abstract denoted by the
question of the content of the fragment.

• parallelism with the antecedent is captured by dependencies
between sal-utt and the NSU.

51

(19) decl-frag-cl (quant-free version)

sal-utt : Sign

max-qud : WhQuestn

cat : v

dtrs :
〈

hd-dtr:
[
cat = sal-utt.cat : Syncat

]〉

cont = max-qud(hd-dtr.cont) : Prop

52

Part 3

Decomposing Protocols

53

Dialogue Analysis

• Dialogue analyst’s task: describe conventionally acceptable
patterns of interaction (protocols), in terms of sequences of
information states.

• Methodological constraint: compositionality (but as with the
sentential level not obsessively [cf. the need for constructionism].

54

Basics of Interaction

• Larsson (2002), Cooper (2004) pioneered use of type theory to
underpin issue based dialogue management.

• Public/private interface emphasized: update rules describe
modification of total information state (TIS).

• Here: emphasis on description at public level (in so far as
possible); some mention of public/private interface below.

55

• each dialogue participant’s view of the common ground, the
dialogue gameboard (DGB), are records of the following type:

(20)

facts : Prop

Moves : list(IllocProp)

QUD : list(Question)

c : ¬Resolve(facts, QUD)

• With respect to Moves—often focus on first element of
list—LatestMove.

• The basic units of change are mappings between DGBs that
specify how one DGB configuration can be modified into another.
∴ conversational rule.

• The types specifying its domain and its range respectively the
preconditions and the effects.

56

Basics of Interaction

• Notationwise a conversational rule will be specified as in (21a).
We will often notate such a mapping as in (21b):

(21) a. r :

. . .

dgb1 : DGB

. . .

7→

. . .

dgb2 : DGB

. . .

b.

pre : RType

post : RType

57

Basics of Interaction: the compositional principle

• We can recognize one fundamental compositional principle:

(22) Composition of conversational rules: given 2
conversational rules part1, part2 that satisfy
preconds(part2) v effects(part1) they can be composed
yielding a new conversational rule whose preconds =
preconds(part1) and whose effects = effects(part2)

• (22) will be the basic tool we use in decomposing protocols.

58

Greeting and Parting

• An initiating greeting typically occurs dialogue initially.

• The primary contextual effect of such a greeting is simply
providing the addressee with the possibility of reciprocating with
a counter-greeting.

• A countergreeting simply grounds the original greeting, requires
no response, nor has other contextual effects.

• We should be careful not to build into greetings any obligation to
countergreet, given examples like the following:

(23) A: Hi Mo. How are you?
B: OK. Where are you heading?

59

Greeting and Parting

• The conversational rule associated with greeting:

(24)

pre =

init-spkr: Ind

init-addr: Ind

moves = elist : list(IllocProp)

qud = elist : list(Question)

facts = commonground1 : Prop

post =

LatestMove = Greet(pre.init-spkr,pre-initaddr):IllocProp

qud = pre.qud : list(Question)

facts = pre.facts : Prop

60

• Note also the need to initialize facts—a contextual parameter (cf.
Clark), forced upon us by thinking in terms of TTR.

61

Greeting and Parting

• Countergreeting has as its precondition that LatestMove is
greet(A,B).

• Assuming a distinction between greeting and countergreeting,
motivated by existence in some languages of forms usable only as
responses to greetings (e.g. Arabic ‘marhabteyn’, ‘sabax elnur’
etc.), intonational differences (e.g. in English initiating greeting
involve fall, responsive greetings involve rise.) Boils down to the
initiating/reactive distinction (see below.).

62

(25)

pre =

init-spkr: Ind

init-addr: Ind

LatestMove =

Greet(pre.init-spkr,pre-initaddr):IllocProp

qud = elist : list(Question)

facts = commonground1 : Prop

post =

LatestMove =

CtrGreet(pre.initaddr,pre.initspkr):IllocProp

qud = pre.qud : list(Question)

facts = pre.facts : Prop

63

Greeting: an example

(26) A: Hi B: Hi.

• Specify words like ‘hi’, ‘good morning’ in the lexicon as

phon : HI

c-params =

s : Ind

a: Ind

. . .

: RType

cont = Greet(s,a) : IllocProp

64

Greeting and Parting

• Parting is in some sense the mirror image of greeting: the basic
prep condition for parting is that the conversation is at a stage
that allows it to be terminated.

• This means that QUD is empty, either because all issues
previously raised have indeed been discussed sufficiently or
because the parter decides to downdate those that have not:

65

(27)

pre =

init-spkr: Ind

init-addr: Ind

qud = elist : list(Question)

facts = commonground1 : Prop

post =

LatestMove = Part(pre.init-spkr,pre-initaddr): IllocProp

qud = pre.qud : list(Question)

facts = pre.facts : Prop

66

• Counterparting:

(28) a.

pre =

init-spkr: Ind

init-addr: Ind

LatestMove =

Part(pre.initspkr,pre.initaddr):IllocProp

qud = elist : list(Question)

facts = commonground1 : Prop

post =

LatestMove =

CounterPart(pre.init-addr,pre.initspkr):IllocProp

qud = pre.qud : list(Question)

facts = pre.facts : Prop

67

b.

pre =

init-spkr: Ind

init-addr: Ind

LatestMove =

CtrPart(pre.initspkr,pre.initaddr):IllocProp

qud = elist : list(Question)

facts = commonground1 : Prop

post =

LatestMove =

Disengaged(pre.initaddr,pre.initspkr) : IllocProp

qud = pre.qud : list(Question)

facts = pre.facts : Prop

68

Asking, Asserting, Answering, and Accepting

• Broadly speaking queries and assertions are either issue
initiating—they introduce an issue unrelated to those currently
under discussion— or they are reactive—they involve a reaction
to a previously raised issue.

• Accounting for the the reactive ones using DGB–based
conversational rules is simple. These can also be used to
explicate the effects issue initiating moves have. Will not discuss
today the background of such moves, which is intrinsically tied in
with the unpublicized aspects of information states (cf. Larsson
2002, Asher and Lascarides 2003)

69

Asking, Asserting, Answering, and Accepting

• The most prototypical query exchange involves q getting posed
by A, B adopting q and providing a response:

(29) cooperative query exchange

1. LatestMove.Cont = Ask(A,q): IllocProp

2. A: push q onto QUD; release turn

3. B: push q onto QUD; take turn; make q-specific

utterance (partial answer to q; subquestion of

q)

70

• Two aspects of this protocol are not query specific:

1. The protocol is like the ones we have seen for greeting and parting
a 2-person turn exchange protocol (2-PTEP).

2. The specification make q-specific utterance is an instance of a
general constraint that characterizes the contextual background of
reactive queries and assertions:

(30) QSpec:

pre =

qud = [q,. . .] : list(Question)

facts = commonground1 : Prop

post =

LatestMove = ip0 : IllocProp

c1 : Qspecific(ip0,pre.dgb.qud.first)

qud = pre.qud : list(Question)

facts = pre.facts : Prop

71

• The only query specific aspect of the protocol is:

(31) Ask QUD–incrementation:

pre =

init-spkr: Ind

init-addr: Ind

q : Question

LatestMove = Ask(initspkr,initaddr,q):IllocProp

qud : list(Question)

facts = commonground1 : Prop

post =

LatestMove = pre.LatestMove : IllocProp

qud = [q,pre.qud] : list(Question)

facts = pre.facts : Prop

72

Asking, Asserting, Answering, and Accepting

• Basic protocol for assertion can be summarized as follows:

(32) cooperative assertion exchange

1. LatestMove.Cont = Assert(A,p): IllocProp

2. A: push p? onto QUD, release turn

3. B: push p? onto QUD, take turn; Option 1:

Discuss p?, Option 2: Accept p

(33) 1. LatestMove.Cont = Accept(B,p) : IllocProp

2. B: increment FACTS with p; pop p? from QUD;

3. A: increment FACTS with p; pop p? from QUD;

• What are the components of this protocol? Not specific to
assertion is the fact that it is a 2-PTEP; similarly, the discussion
option is simply an instance of QSPEC.

73

• This leaves two novel components: QUD incrementation with p?
and acceptance.

(34) Assert QUD–incrementation:

pre =

init-spkr: Ind

init-addr: Ind

p : Prop

LatestMove = Assert(initspkr,initaddr,p):IllocProp

qud : list(Question)

facts = commonground1 : Prop

post =

LatestMove = pre.LatestMove : IllocProp

qud = [p?,pre.qud] : list(Question)

facts = pre.facts : Prop

74

• Acceptance is a somewhat more involved matter because a lot of
the action is not directly perceptible.

• The labour can be divided here in two: on the one hand is the
action brought about by an acceptance utterance (e.g. ‘mmh’, ‘I
see’).

• The background for an acceptance by B is an assertion by A and
the effect is to modify LatestMove:

75

(35) Accept move:

pre =

init-spkr: Ind

init-addr: Ind

p : Prop

LatestMove = Assert(initspkr,initaddr,p):IllocProp

qud = [p?,pre.qud] : list(Question)

facts = commonground1 : Prop

post =

LatestMove = Accept(pre.initaddr,initspkr,p) : IllocProp

qud = pre.qud : list(Question)

facts = pre.facts : Prop

76

• The second component of acceptance is the incrementation of
FACTS by p.

• This is not quite as straightforward as it might seem: when
FACTS gets incremented, we also need to ensure that p? gets
downdated from QUD, to ensure that the Nonresolvedness
condition is maintained.

• In order to ensure that this is the case, we need to check for all
existing elements of QUD that they are not resolved by the new
value of FACTS.

• Hence, accepting p involves both an update of FACTS and a
downdate of QUD—minimally just removing p?, potentially
removing other questions as well.

77

(36)

pre =

init-spkr: Ind

init-addr: Ind

p : Prop

LatestMove = Accept(initspkr,initaddr,p):IllocProp

qud = [p?,pre.qud] : list(Question)

facts = commonground1 : Prop

post =

LatestMove = pre.LatestMove : IllocProp

facts = pre.facts ∧ p: Prop

qud = NonResolve(pre.qud,facts) : list(Question)

NonResolve : [q1, . . . , qn], p 7→ [. . . qi . . .] ⊂ [q1, . . . , qn],
q ∈ [. . . qi . . .]↔ ¬Resolve(p, q)

78

Part 4

Scaling down to Monologue

79

Some simple monologue cases

• How to deal with cases like self answering, successive
querying/assertion?

• Note that in (37c) the self answer isn’t even discussed:

(37) a. Vicki: When is, when is Easter? March, April? (BNC,
KC2, 2938-2939)

b. Unknown: When was that? That was last week wasn’t it?
(3010-11)

80

c. Frederick: When’s it taking place? (pause)
Joan: Erm it’s the last Saturday of half term so I should
think it’s about erm (pause) when’s half term? Eighteenth
on the Monday I think (pause) so it’ll be twenty (pause)
erm it’s the fifth is it when I, no it won’t (pause) it’s not
as late as that is it (pause) eighteenth, nineteenth,
twentieth, twenty one (pause) about the twenty second,
something like that. (3067-3069)

81

Some simple monologue cases: querying

• Self answering is accommodated by QSpec: no turn exchange
mechanism built in.

• Second query becomes QUD maximal:

(38) a. Ann: What are your shifts next week? Can you
remember offhand?
James: Yes. I’m early Monday and Tuesday (pause) and
Wednesday (pause) a day off Thursday (pause) Friday
(pause) late (4968-4971)

b. Ann: Anyway, talking of over the road, where is she? Is
she home?
Betty: No. She’s in the Cottage. (5121-5124)

82

• Evidence from NSUs for precedence of second query:

(39) a. A: Who is the dog waiting for? Why is he making such a
racket? B: ?No one. He’s just happy.

b. A: Why is the dog making such a racket? Who is he waiting
for? B: No one. He’s just happy..

• Return to cases such as following later:

(40) a. Arthur: How old is she? Forty?
Evelyn Forty one! (456-458)

b. Evelyn: what time is it?, is it eight thirty five yet?
Arthur: twenty past (6527-8)

83

Some simple monologue cases: assertion

• QSpec also allows for successive assertions p1, p2, where p2 is
About p1?.

• When later assertion p2 accepted, the issue associated with the
earlier assertion p1 will be downdated iff FACTS (including p2)
resolves p1?:

(41) a. A: Several people showed up. Bill did.
B: Aha.
A: Max did.
B: I see.

• This is an implicit mechanism for accepting p1.

• Can accommodate further rhetorical relations, if necessary, by
postulating additional conversational rules.

84

Part 5

Scaling up to Multilogue (joint work with
Raquel Fernàndez)

85

The Fundamental Issue of Multilogue

• Dialogue—two person conversation—is by now a topic with an
ever increasing theoretical, corpus-based, and implementational
literature.

• The study of multilogue—conversation with 3 or more
participants—is still in its early stages.

• Fundamental question: Is multilogue an aggregate of
dialogues? Or is multilogue an irreducibly different form
of interaction?

• Is dialogue a multilogue with 2 participants?

86

Some issues in scaling up from dialogue to multilogue

• Dialogue: current addressee is next speaker; consensus involves
acceptance by addressee

• Multilogue: audience is larger, role change more complex.

• Querying: who has right/obligation to respond?

• Assertion/Uttering: does a proposition (utterance) become
common ground after a single/multiple/universal acceptance?

87

Multiagent Systems

• Multiagent Systems: communication between autonomous
software agents.

• Most interaction protocols are designed only for two participants
at a time.

• The FIPA (Foundation for Intelligent Physical Agents)
interaction protocols (IP) for agent communication language
(FIPA, 2003) are most typically designed for two participants, an
initiator and a responder.

• Some IPs permit the broadcasting of a message to a group of
addressees, and the reception of multiple responses by the
original initiator.

• (Dignum and Vreeswijk, 2003): such conversations can not be
considered multilogue, but rather a number of parallel dialogues.

88

Mission Rehearsal Exercise Project

• One of few existing multilogial systems is work done by David
Traum and colleagues, related to the Mission Rehearsal Exercise
(MRE) Project.

• The setting of the MRE project, used for training of Army
personnel, is a virtual reality environment where multiple
partners (including humans and other autonomous agents)
engage in multi-conversation situations.

• The model of grounding implemented in the MRE project
(inspired by Traum and Poesio, 1997) can only be used in cases
where there is a single initiator and responder. How to scale up
to multiple addresses unclear: should the contents be considered
grounded when any of the addressees has acknowledged them?
Should evidence of understanding be required from every
addressee?

89

Long Distance NSUs in Dialogue and Multilogue: Data

• The corpus we use in this investigation includes and extends the
sub-corpus mentioned earlier.

• 14,315 sentences. created by excerpting a 200-speaker-turn
section from 54 BNC files. Of these files, 29 are transcripts of
conversations between two dialogue participants, and 25 files are
multilogue transcripts.

• A total of 1285 NSUs were found in our sub-corpus. Table 1
shows the raw counts of NSUs found in the dialogue and
multilogue transcripts, respectively.

90

NSUs # BNC files

Dialogue 709 29

Multilogue 576 25

Total 1285 54

Table 1: Total of NSUs in Dialogue and Multilogue

91

Long Distance NSUs in Dialogue and Multilogue: Data

• All NSUs encountered within the corpus were manually classified
according to the NSU typology presented in (Fernandez and
Ginzburg, 2002)

• In order to be able to measure the distance between NSUs and
their antecedents, all instances were additionally tagged with the
sentence number of their antecedent utterance.

92

Distance

NSU Class Example Total 1 2 3 4 5 6 >6

Acknowledgment Mm mm. 595 578 15 2

Short Answer Ballet shoes. 188 104 21 17 5 5 8 28

Affirmative Answer Yes. 109 104 4 1

Clarification Ellisis John? 92 76 13 2 1

Repeated Ack. His boss, right. 86 81 2 3

Rejection No. 50 49 1

Factual Modifier Brilliant! 27 23 2 1 1

Repeated Aff. Ans. Very far, yes. 26 25 1

Help Rejection No, my aunt. 24 18 5 1

Check Question Okay? 22 15 7

Filler ... a cough. 18 16 1 1

Bare Mod. Phrase On the desk. 16 11 4 1

Sluice When? 11 10 1

Prop. Modifier Probably. 11 10 1

Conjunction Phrase Or a mirror. 10 5 4 1

1285 1125 82 26 9 7 8 28

% 87.6 6.3 2 0.6 0.5 0.6 2.1

Table 2: Total of NSUs sorted by Class and Distance

93

Long Distance NSUs in Dialogue and Multilogue:
Results

• 87% of NSUs have a distance of 1 sentence (i.e. the antecedent
was the immediately preceding sentence), and that the vast
majority (about 96%) have a distance of 3 sentences or less.

• The proportion of long distance NSUs in multilogue is far higher
than in dialogue. NSUs that have a distance of 7 sentences or
more appear exclusively in multilogue transcripts.

Distance 1 2 3 4 5 6 7 8 9 10 >10

Total 467 45 15 8 6 7 3 1 2 1 21

% 41 55 55 88 86 87 100 100 100 100 100

Table 3: Total and % of NSUs in Multilogue sorted by Distance

94

Adjacency of grounding and affirmation utterances

• A fundamental characteristic of the remaining majoritarian
classes of NSUs, Ack(nowledgements), Affirmative Answer, CE

(clarification ellipsis), Repeated Ack(nowledgements), and
Rejection.

• These are used either in grounding interaction, or to affirm/reject
propositions.

• The overwhelming adjacency to their antecedent underlines the
locality of these interactions.

95

The Multilogue Short Answer (MSA) effect

• With a few exceptions, NSUs that have a distance of 3 sentences
or more are exclusively short answers.

• The frequency of long distance short answers stands in strong
contrast to the other NSUs classes; indeed, over 44% of short
answers have more than distance 1, and over 24% have distance 4
or more, like the last answer in the following example:

96

(42) Allan: How much do you think?

Cynthia: Three hundred pounds.

Sue: More.

Cynthia: A thousand pounds.

Allan: More.

Unknown: <unclear>

Allan: Eleven hundred quid apparently.

[BNC, G4X]

97

The Multilogue Short Answer (MSA) effect

• Table 4 shows the total number of short answers found in
dialogue and multilogue respectively, and the proportions sorted
by distance over those totals:

Short Answers Total # 1 2 3 > 3

Dialogue 54 82 9 9 0

Multilogue 134 44 11 8 37

Table 4: % over the totals found in dialogue and multilogue

98

Dialogue v. Multilogue Short Answer distribution

• short answers are more common in multilogue than in
dialogue—71% v. 29%.

• The distance pattern exhibited by these two groups is strikingly
different: only 18% of short answers found in dialogue have a
distance of more than 1 sentence, with all of them having a
distance of at most 3, like the short answer in (43):

(43) Malcolm: [...] cos what’s three hundred and sixty

divided by seven?

Anon 1: I don’t know.

Malcolm: Yes I don’t know either!

Anon 1: Fifty four point fifty one point four.

[BNC, KND]

99

• This dialogue/multilogue asymmetry argues against reductive
views of multilogue as sequential dialogue.

100

Explaining away the dialogue short answer distribution

• In dialogue certain commonly observed conditions will enforce
adjacency between short answers and their interrogative
antecedents.

(44) a. Questions have a simple, one phrase answer.

b. Questions can be answered immediately, without
preparatory or subsequent discussion.

• For multilogue (or at least certain genres thereof), (44) are less
likely to be maintained: different CPs can supply different
answers, even assuming that relative to each CP there is a
simple, one phrase answer.

• The more CPs there are in a conversation, the smaller their
common ground and the more likely the need for clarificatory
interaction.

101

Explaining away the dialogue short answer distribution

• A pragmatic account of this type of the frequency of adjacency in
dialogue short answers seems clearly preferable to any actual
mechanism that would rule out long distance short answers.
These can be perfectly felicitous—see e.g. example (45)above
which would work fine if the turn uttered by Sue had been
uttered by Allan instead:

102

(45) Allan: How much do you think?

Cynthia: Three hundred pounds.

Allan: More.

Cynthia: A thousand pounds.

Allan: More.

Cynthia: <unclear>

Allan: Eleven hundred quid apparently.

[BNC, G4X]

103

Long Distance short answer unaffected by group size

• Not all groups have the same number of participants—but the
long distance possibilities seem unaffected.

• Following Fay et al 2003, we distinguish between small groups
(those with 3 to 5 participants) and large groups (those with
more than 5 participants).

• The size of the group is determined by the amount of
participants that are active when a particular short answer is
uttered. We consider active participants those that have made a
contribution within a window of 30 turns back from the turn
where the short answer was uttered.

104

Long Distance short answer unaffected by group size

• Table 5 shows the amount of short answers found in small and
large groups respectively, after examination of those short
answers at more than distance 3 (a total of 46):

Group Size Total

≤ 5 20

> 5 26
Table 5: Short Answers in small and large groups

• Large groups multilogues in the corpus are all transcripts of
tutorials, training sessions or seminars, which exhibit a rather
particular structure.

105

• The general pattern involves a question being asked by the tutor
or session leader, the other participants then taking turns to
answer that question. The tutor or leader acts as turn manager.
She assigns the turn explicitly usually by addressing the
participants by their name without need to repeat the question
under discussion:

106

(46) Anon1: How important is those three components and

what value would you put on them [...]

Anon3: Tone forty five. Body language thirty .

Anon1: Thank you.

Anon4: Oh.

Anon1: Melanie.

Anon5: twenty five.

Anon1: Yes.

Anon5: Tone of voice twenty five. [BNC, JYM]

107

• Small group multilogues on the other hand have a more
unconstrained structure: after a question is asked, the
participants tend to answer freely. Answers by different
participants can follow one after the other without explicit
acknowledgements nor turn management, like in (47):.

(47) Anon 1: How about finance then? <pause>

Unknown 1: Corruption

Unknown 2: Risk <pause dur=30>

Unknown 3: Wage claims <pause dur=18>

108

Two Benchmarks of multilogue

• Multilogue Long Distance short answers (MLDSA):
querying protocols for multilogue must license short answers an
unbounded number of turns from the original query.

• Multilogue adjacency of grounding/acceptance (MAG):
assertion and grounding protocols for multilogue should license
grounding/clarification/acceptance moves only adjacently to
their antecedent utterance.

109

Dialogue Protocols for querying and assertion

(48) cooperative query exchange
1. LatestMove.Cont =

Ask(A,q): IllocProp

2. A: q becomes QUD maximal; release turn

3. B: q becomes QUD maximal; take turn; make q-specific

utterance; release turn.

(49) cooperative assertion exchange
1. LatestMove.Cont =

Assert(A,p): IllocProp

2. A: p? becomes QUD maximal, release turn

3. B: p? becomes QUD maximal, take turn; 〈 Option 1:

Discuss p?, Option 2: Accept p 〉

110

(50) 1. LatestMove.Cont = Accept(B,p) : IllocProp

2. B: increment FACTS with p; pop p? from QUD;

3. A: increment FACTS with p; pop p? from QUD;

111

Principles of protocol extension

• All three are intuitive, framework independent, and result in
protocols that approximate interaction in certain settings.

• The final principle we consider, Add Silent Active Participants

(ASAP), seems to yield the best results, relative to the
benchmarks we introduced before.

112

Add Silent Passive Participants

• The simplest principle is Add Silent Passive Participants (ASPP).
This involves adding participants who merely observe the
interaction. They keep track of facts concerning a particular
interaction, but their context is not facilitated for them to
participate:

(51) Given a dialogue protocol π, add roles C1,. . . ,Cn where
each Ci is a silent participant: given an utterance u0

classified as being of type T0, Ci updates Ci.DGB.FACTS
with the proposition u0 : T0.

• Applying ASPP yields essentially multilogues which are
sequences of dialogues.

113

• A special case of this are moderated multilogues, where all
dialogues involve a designated individual (who is also responsible
for turn assignment.).

• ASPP is not adequate for multilogue scaling up since inter alia it
will not fulfill the MLDSA benchmark.

114

Duplicate Responders

• A far stronger principle is Duplicate Responders (DR):

(52) Given a dialogue protocol π, add roles C1,. . . ,Cn which
duplicate the responder role

• Applying DR to the querying protocol yields the following
protocol:
(53) Querying with multiple responders

1. LatestMove.Cont =

Ask(A,q): IllocProp

2. A: q becomes QUD maximal; release turn

3. Resp1: q becomes QUD maximal; take turn; make

q-specific utterance; release turn

4. Resp2: q becomes QUD maximal; take turn; make

q-specific utterance; release turn

5. ...

115

6. Respn: q becomes QUD maximal; take turn; make

q-specific utterance; release turn

• This yields interactions such as (47):

(54) Anon 1: How about finance then? <pause>

Unknown 1: Corruption

Unknown 2: Risk <pause dur=30>

Unknown 3: Wage claims <pause dur=18>

• Pro: the querying protocol in (53) licenses long distance short
answers, so satisfies the MLDSA benchmark.

116

Duplicate Responders

• Con: the contextual updates it enforces will not enable it to deal
with the following (constructed) variant on (47), in other words
does not afford responders to comment on previous responders,
as opposed to the original querier:

(55) A: Who should we invite for the conference?
B: Svetlanov.

C: No (=Not Svetlanov), Zhdanov
D: No (= Not Zhdanov, 6= Not Svetlanov), Gergev

117

Duplicate Responders

• Applying DR to the assertion protocol will yield the following
protocol:

(56) Assertion with multiple responders
1. LatestMove.Cont =

Assert(A,p): IllocProp

2. A: p? becomes QUD maximal, release turn

3. Resp1: p? becomes QUD maximal, take turn; 〈
Option 1: Discuss p?, Option 2: Accept p 〉

4. Resp2: p? becomes QUD maximal, take turn; 〈
Option 1: Discuss p?, Option 2: Accept p 〉

5. ...

6. Respn: p? becomes QUD maximal, take turn; 〈
Option 1: Discuss p?, Option 2: Accept p 〉

118

• One significant problem with this protocol—equally applicable to
the corresponding DRed grounding protocol—is that it licences
long distance acceptance and thus is inconsistent with the MAG
benchmark.

119

Add Silent Active Participants

• A principle intermediate between ASPP and DR is Add Silent

Active Participants (ASAP):

(57) Given a dialogue protocol π, add roles C1,. . . ,Cn, which
affect the same contextual update as the interaction
initiator.

120

Add Silent Active Participants: assertion

• Applying ASAP to the dialogue assertion protocol yields the
following protocol:

(58) Assertion for a conversation involving

{A,B,C1,. . . ,Cn}
1. LatestMove.Cont = Assert(A,p): IllocProp

2. A: p? becomes QUD maximal; release turn

3. Ci: p? becomes QUD maximal

4. B: p? becomes QUD maximal; take turn; 〈Option 1:

Accept p, Option 2: Discuss q1, where q1 is

QUD--maximal〉
(59)1. LatestMove.Cont = Accept(B,p) : IllocProp

2. B: increment FACTS with p; pop p? from QUD;

3. Ci:increment FACTS with p; pop p? from QUD;

4. A: increment FACTS with p; pop p? from QUD;

121

Add Silent Active Participants: assertion

• This protocol satisfies the MAG benchmark in that acceptance is
strictly local.

• The protocol enforces communal acceptance—acceptance by one
CP can count as acceptance by all other addressees of an
assertion.

• There is an obvious rational motivation for this, given the
difficulty of a CP constantly monitoring an entire audience (when
this consists of more than one addressee) for acceptance signals.

122

• It also enforces quick reaction to an assertion—anyone wishing to
dissent from p must get their reaction in early i.e. immediately
following the assertion since further discussion of p? is not
countenanced if acceptance takes place.

• The latter can happen of course as a consequence of a dissenter
not being quick on their feet; on this protocol to accommodate
such cases would require some type of backtracking.

123

Add Silent Active Participants: querying

• Applying ASAP to the dialogue querying protocol yields the
following protocol:

(60) Querying for a conversation involving

{ A,B,C1,. . . ,Cn}
1. LatestMove.Cont =

Ask(A,q): IllocProp

2. A: q becomes QUD maximal; release turn

3. Ci: q becomes QUD maximal

4. B: q becomes QUD maximal; take turn; make

q1-specific utterance, where q1 is QUD--maximal.

• This improves on the DR generated protocol because it does
allow responders to comment on previous responders—the
context is modified as in the dialogue protocol.

124

• As it stands, this protocol won’t fully deal with examples such as
(47)—the issue introduced by each successive participant takes
precedence given that QUD is assumed to be a stack.

• This can be remedied by slightly modifying this latter
assumption: we will assume that when a question q gets added to
QUD it doesn’t subsume all existing questions in QUD, but
rather only those on which q does not depend

• Dependence: common assumption in work on questions, e.g.
Ginzburg and Sag, 2000. Intuitively corresponding to the notion
of ‘is a subquestion of’.

• Formally: q1 depends on q2 iff any proposition p such that p
resolves q2 also satisfies p is about q1.

125

Add Silent Active Participants: querying

• New definition of QUD maximality:

(61) q is QUDmod(dependence) maximal iff for any q0 in QUD such
that ¬Depend(q, q1): q � q0.

• This is conceptually attractive because it reinforces that the
order in QUD has an intuitive semantic basis.

• This ensures that any polar question p? introduced into QUD,
whether by an assertion or by a query, subsequent to a
wh-question q on which p? depends does not subsume q.

• Hence, q will remain accessible as an antecedent for NSUs, as
long as no new unrelated topic has been introduced.

• Also provides a way of dealnig with cases like:

(62) a. Arthur: How old is she? Forty?

126

Evelyn Forty one! (456-458)

b. Evelyn: what time is it?, is it eight thirty five yet?
Arthur: twenty past (6527-8)

• Assuming this modification to QUD is implemented in the above
ASAP–generated protocols, both MLDSA and MAG benchmarks
are fulfilled.

127

ASAP and conversational rules

• We can reuse the conversational rules discussed earlier, modulo
additional roles for participants.

128

Conclusions and Future Work

• We have used Type Theory with Records (Cooper, 2005) to
formulate conversational rules that apply to monologue, dialogue,
and multilogue.

• Some rules make no reference to turn exchange (e.g QSpec).

• Others intrinsically do: e.g. acceptance (cf. also clarification
requests)

• NSU data indicates locality of most interaction processes.

• QUD potentially used for unbounded resolution.

129

References

1. Robin Cooper (2004) ‘A type theoretic approach to information
state update in issue based dialogue management.’ Talk given at
Catalog’04, available from http://www.ling.gu.se/c̃ooper

2. Robin Cooper (2005) ‘Austinian Truth in Martin-Löf Type
Theory’, Research on Language and Computation.

3. Nicholas Fay, Simon Garrod, and Jean Carletta (2000) ‘Group
discussion as interactive dialogue or serial monologue.’
Psychological Science, pages 481–486.

4. Raquel Fernández and Jonathan Ginzburg (2002) ‘Non-sentential
utterances: A corpus study.’ Traitement automatique des
languages. Dialogue, 43(2):13–42.

5. FIPA (2003) ‘The foundation for intelligent physical agents.
interaction protocol specifications.’ http://www.fipa.org.

130

6. Jonathan Ginzburg and Ivan A. Sag (2000) Interrogative
Investigations: the form, meaning and use of English
Interrogatives. Number 123 in CSLI Lecture Notes. CSLI
Publications, Stanford: California.

7. Jonathan Ginzburg (1996) ‘Interrogatives: Questions, facts, and
dialogue.’ In: Shalom Lappin, editor, Handbook of Contemporary
Semantic Theory. Blackwell, Oxford.

8. Jonathan Ginzburg (2005) ‘Abstraction and Ontology: questions
as propositional abstracts in type theory with records’. Journal
of Logic and Computation.

9. Staffan Larsson (2002) Issue based Dialogue Management. Ph.D.
thesis, Gothenburg University.

10. Massimo Poesio and David Traum (1997) ‘Conversational actions
and discourse situations.’ Computational Intelligence 13 (3).

131

11. David Traum and Jeff Rickel (2002) ‘Embodied agents for
multi-party dialogue in immersive virtual world.’ In: Proceedings
of the first International Joint Conference on Autonomous
Agents and Multi-agent Systems (AAMAS 2002), pages 766–773.

