
Learning to Classify
Non Sentential Utterances

Raquel Fernández

Group of Logic, Language & Computation
Department of Computer Science

King’s College London

raquel@dcs.kcl.ac.uk

[Joint work with Jonathan Ginzburg & Shalom Lappin]

Learning to Classify NSUs 1

Non Sentential Utterances

Conversations are full of fragmentary utterances

- at least 11% (Fernández and Ginzburg 2002)

Anon 1: How did you travel?

Anon 2: By, by bus. [BNC, HDM]

. . .

Kay: That’s no good because the mass is on Thursday.

Unknown: <whispering> Which Thursday?

Kay: This Thursday coming. [BNC, HDD]

. . .

Janet: Right, David I’ll talk to you.

Carol: About?

Janet: Erm, unit linking. [BNC, JK8]

Non Sentential Utterances: fragmentary form but full sentential meaning

Learning to Classify NSUs 2

Non Sentential Utterances

• NSUs are a challenging problem both for linguistic theories and

implemented dialogue systems

• Arguably the most important issue in the processing of NSUs

concerns their resolution (i.e. the recovery of a clausal meaning

from an incomplete form)

• However, a necessary first step towards this final goal is the

identification of the right NSU type, which will determine the

appropriate resolution procedure

• Here we address this latter issue, namely the classification of NSUs,

using a machine learning approach.

Learning to Classify NSUs 3

Talk Overview

• Taxonomy of NSUs

• Resolving NSUs - theory sketch

• Learning to classify NSUs

◦ Data

◦ Features

◦ Baseline

◦ Machine learning results

• Evaluation & discussion

Learning to Classify NSUs 4

NSU Taxonomy

• We follow the corpus-based taxonomy of NSUs developed in

(Fernández & Ginzburg 2002)

• It was designed after exhaustive analysis of 10 randomly chosen

BCN files, assisted by the search engine SCoRE (Purver 2001).

• It was tested by manual annotation of a randomly selected section

of 200-speaker-turns from 54 BNC files. The examined sub-corpus

contains 14,315 sentences.

• We found a total of 1296 NSUs. They were all labeled according to

the typology presented below, and annotated with the sentence

number of its antecedent utterance.

• Annotation: manual using decision trees. Reliability: in progress.

Learning to Classify NSUs 5

NSU Taxonomy

• The original taxonomy contains a total of 15 classes

• Here we focus on 13 classes, excluding plain acknowledgments (like

“Mhm”) and check questions (like “Okay?”)

• We partition NSUs into question-denoting types and

proposition-denoting types

Learning to Classify NSUs 6

NSU Taxonomy - Question-denoting NSUs

• Sluices and Clarification Ellipsis (CE) are the two classes of NSUs

that denote questions.

• Sluices: We consider as sluices all wh-question NSUs (contra F&G

2002’s taxonomy), thereby conflating direct with reprise sluices.

(Fernández et al. 2004) show that sluice interpretations can be

efficiently disambiguated using machine learning techniques.

(1) June: Only wanted a couple weeks.

Ada: What? [KB1, 3312]

(2) Cassie: I know someone who’s a good kisser.

Catherine: Who? [KP4, 512]

Learning to Classify NSUs 7

NSU Taxonomy - Question-denoting NSUs

• Clarification Ellipsis (CE) We use this category to classify reprise

fragments used to clarify an utterance that has not been fully

comprehended.

(3) A: There’s only two people in the class

B: Two people? [KPP, 352–354]

(4) A: . . . You lift your crane out, so this part would come up.

B: The end? [H5H, 27–28]

Learning to Classify NSUs 8

NSU Taxonomy - Proposition denoting NSUs

• Short Answer: Short Answers are typical responses to (possibly

embedded) wh-questions.

(5) A: Who’s that?

B: My Aunty Peggy. [G58, 33–35]

(6) A: Can you tell me where you got that information from?

B: From our wages and salary department. [K6Y, 94–95]

• However, there is no explicit wh-question in a short answer to a CE

question (7), nor in cases where the wh-phrase is ellided (8).

(7) A: Vague and?

B: Vague ideas and people. [JJH,65–66]

(8) A: What’s plus three time plus three?

B: Nine.

A: Right. And minus three times minus three?

B: Minus nine. [J91, 172–176].

Learning to Classify NSUs 9

NSU Taxonomy - Proposition denoting NSUs

• Plain Affirmative Answer and Rejection: The typical context of

these two classes of NSUs is a polar question.

(9) A: Did you bring the book I told you?

B: Yes./ No.

• They can also answer implicit polar questions, e.g. CE questions:.

(10) A: That one?

B: Yeah. [G4K, 106–107]

• Rejections can also be used to respond to assertions:

(11) A: I think I left it too long.

B: No no.[G43, 26–27]

• Both plain affirmative answers and rejections are strongly indicated

by lexical material, characterized by the presence of a “yes” word

(“yeah”, “aye”, “yep”...) or the negative interjection “no”

Learning to Classify NSUs 10

NSU Taxonomy - Proposition denoting NSUs

• Repeated Affirmative Answer Typically, repeated affirmative

answers are responses to polar questions. They answer affirmatively

by repeating a fragment of the query.

(12) A: Did you shout very loud?

B: Very loud, yes. [JJW, 571-572]

• Repeated Acknowledgment This class is used for

acknowledgments that, as repeated affirmative answers, also repeat

a part of the antecedent utterance, which in this case is a

declarative.

(13) A: I’m at a little place called Ellenthorpe.

B: Ellenthorpe. [HV0, 383–384]

Learning to Classify NSUs 11

NSU Taxonomy - Proposition denoting NSUs

• Helpful Rejection The context of helpful rejections can be either a

polar question or an assertion.

• In the first case, they are negative answers that provide an

appropriate alternative:

(14) A: Is that Mrs. John [last or full name]?

B: No, Mrs. Billy. [K6K, 67-68]

• As responses to assertions, they correct some piece of information in

the previous utterance:

(15) A: Well I felt sure it was two hundred pounds a, a week.

B: No fifty pounds ten pence per person. [K6Y, 112–113]

Learning to Classify NSUs 12

NSU Taxonomy - Proposotion denoting NSUs

• Propositional and Factual Modifiers These two NSU classes are

used to classify propositional adverbs like (16) and factual adjectives

like (17), respectively, in stand-alone uses.

(16) A: I wonder if that would be worth getting?

B: Probably not. [H61, 81–82]

(17) A: So we we have proper logs? Over there?

B: It’s possible.

A: Brilliant! [KSV, 2991–2994]

• Bare Modifier Phrase This class refers to NSUs that behave like

adjuncts modifying a contextual utterance. They are typically PPs

or AdvPs.

(18) A: . . . they got men and women in the same dormitory!

B: With the same showers! [KST, 992–996]

Learning to Classify NSUs 13

NSU Taxonomy - Proposotion denoting NSUs

• Conjunction + fragment This NSU class is used to classify

fragments introduced by conjunctions.

(19) A: Alistair erm he’s, he’s made himself coordinator.

B: And section engineer. [H48, 141–142]

• Filler Fillers are NSUs that fill a gap left by a previous unfinished

utterance.

(20) A: [. . .] twenty two percent is er <pause>

B: Maxwell. [G3U, 292–293]

Learning to Classify NSUs 14

Resolving NSUs - Theory

• (Ginzburg & Sag 2001) analyse NSUs by combining

HPSG - grammatical constructions (Sag 1997)

KOS - a theory of context in dialogue (Ginzburg 1996, forth.)

• The main idea is that NSUs get their main predicates from context,

via combination (unification or functional composition) with the

question that is currently under discussion[
max-qud maximal question under discussion

sal-utt salient utterance

]

Learning to Classify NSUs 15

NSU Resolution - the SAL-UTT

• The salient-utterance parameter (sal-utt) represents the

antecedent sub-utterance. This plays a role similar to the

parallel element in higher order unification–based approaches

(see e.g. Dalrymple et al. 1991 and Pulman 1997)

• The sal-utt provides a partial specification of the

focal (sub)utterance - it is computed as the (sub)utterance

associated with the role bearing widest scope within max-qud.

• sal-utt is used to encode syntactic and phonological parallelism

between the fragment and an antecedent (e.g. case matching or

even phonological identity).

• Many of the heuristics we develop for disambiguating NSUs relate to

identifying the sal-utt.

Learning to Classify NSUs 16

NSU Resolution - Identifying MAX-QUD

• In the most prototypical case, the max-qud is the content of the

most recent utterance, like in short answers; the sal-utt in such

a case is the sub-utterance of the wh-phrase:

A: Who phoned? B: Bo (= Bo phoned).

max-qud: λx.Phone(x, t)

• For propositional lexemes such as ‘yes’, ‘no’, and ‘probably’ the

max-qud is a polar question p? such that the (content of the) most

recent utterance is (an assertion of) p.

A: Did Bo phone?

B: Yes/No/Probably (= Bo phoned/didn’t phoned/probably phoned).

A: Bo phoned.

B: Yes/No/Probably (= Bo phoned/didn’t phoned/probably phoned).

max-qud: ?Phone(b, t)

Learning to Classify NSUs 17

NSU Resolution - Identifying MAX-QUD

• In direct sluicing, the max-qud is a polar question p?, where p is

required to be a quantified proposition; the sal-utt in such a case

is the sub-utterance associated with the widest scoping quantifier:

A: A student phoned. B: Who? (= Which student phoned?)

A: Did someone phone? B: Who? (= Who phoned?).

max-qud: ?∃x.Phone(x, t)

• Adjuncts sluices are possible even without an overt antecedent; in

such cases the value of sal-utt needs to be null

A: John saw Mary.

B: Why?/With who? (= Why/With who did John see Mary?)

max-qud: ?See(j, m, t)

Learning to Classify NSUs 18

NSU Resolution - Identifying MAX-QUD

• max-qud can also arise in a somewhat less ‘direct’ way, via a

process of utterance coercion (see Cooper & Ginzburg 2002),

triggered by the inability to ground (Clark 1996, Traum 1994) the

previous utterance.

• In reprise sluicing and CE, the max-qud is a question about the

content of a sub-utterance which the addressee cannot resolve - the

output of a coercion operation. The unresolved sub-utterance

constitutes the sal-utt.

A: Did Bo leave?

B: Who? (= Who are you asking if s/he left?)

max-qud: λbAsk(A, ?leave(b, t))

Learning to Classify NSUs 19

NSU Resolution - Implementation

• SHARDS (Ginzburg et al. 2001, Fernández et al. in press) is an

implemented system which provides a procedure for computing the

interpretation of NSUs in dialogue. The system comprises two main

components: an HPSG-based grammar and a resolution procedure.

• The system currently handles short answers, direct and reprise

sluices, as well as plain affirmative answers to polar questions.

• SHARDS has been extended to cover several types of clarification

requests and used as a part of the information-state-based dialogue

system CLARIE (Purver 2004a, Purver 2004b). In particular,

CLARIE can parse and generate reprise sluices by implementing the

aforementioned analysis of grounding/clarification interaction.

Learning to Classify NSUs 20

Talk Overview

• Taxonomy of NSUs

• Resolving NSUs - theory sketch

• Learning to classify NSUs

◦ Data

◦ Features

◦ Baseline

◦ Machine learning results

• Evaluation & discussion

Learning to Classify NSUs 21

Classifying NSUs - Data

The data used in our experiments was selected from our corpus of NSUs

following two simplifying restrictions:

• We decided to leave aside feedback NSUs, i.e. those NSUs classified

as Acknowledgments (595 instances) or as Check Questions (22

instances). We plan to incorporate them in a future phase of our

investigation.

• We restrict our experiments to those NSUs whose antecedent is the

immediately preceding utterance. This restriction, which makes the

feature annotation task easier, does not pose a coverage problem,

given that the immediately preceding utterance is the antecedent for

the vast majority of NSUs (88%).

Learning to Classify NSUs 22

Classifying NSUs - Data

• Distribution of classes in the sub-corpus used in our experiments:

NSU class Total

Short Answer 105

Affirmative Answer 100

Repeated Ack. 80

CE 65

Rejection 48

Repeated Aff. Ans. 25

Factual Modifier 23

Sluice 20

Helpful Rejection 18

Filler 16

Bare Mod. Phrase 11

Propositional Modifier 10

Conjunction + frag 5

Total dataset 527

Learning to Classify NSUs 23

Classifying NSUs - Features

We identify three aspects that play an important role in the NSU

classification task:

• The first one has to do with semantic, syntactic and lexical

properties of the NSUs themselves.

• The second one refers to the properties of its antecedent utterance.

• The third concerns relations between the antecedent and the

fragment.

Learning to Classify NSUs 24

Classifying NSUs - Features

feature description values

ant mood mood of the antecedent utterance decl,n decl

wh ant presence of a wh word in the antecedent yes,no

finished (un)finished antecedent fin,unf

nsu cont content of the NSU (either prop or question) p,q

wh nsu presence of a wh word in the NSU yes,no

aff neg presence of a “yes”/“no” word in the NSU yes,no,e(mpty)

lex presence of different lexical items in the NSU p mod,f mod,mod,conj,e(mpty)

repeat repeated words in NSU and antecedent 0-3

parallel repeated tag sequences in NSU and antecedent 0-3

Learning to Classify NSUs 25

Classifying NSUs - Feature Annotation

• We annotate the 527 instance sub-corpus of NSUs with the features

shown above

• Our feature annotation algorithm is similar to the one used in

(Fernández et al. 2004), which exploits the SGML markup of the

BNC

• All feature values are extracted automatically using the PoS

information encoded in the BNC markup. The BNC was

automatically annotated with a set of 57 PoS codes (known as the

C5 tagset), plus 4 codes for punctuation tags, using the CLAWS

system (Garside 1987)

Learning to Classify NSUs 26

Classifying NSUs - Feature Annotation

• Some features, like nsu cont and ant mood for instance, are high

level features with no straightforward POS tag correlate.

Punctuation tags (corresponding to intonation in speech) help to

extract the values of these features, but the correspondence is still

not unique.

• For this reason we evaluate our automatic feature annotation

procedure against a small sample of manually annotated data.

• We randomly selected 10% of our dataset (52 instances) and

extracted the feature values manually. In comparison with this gold

standard, our automatic feature annotation procedure achieves 89%

accuracy.

• We use only automatically annotated data for the learning

experiments.

Learning to Classify NSUs 27

Learning to Classify NSUs - Experiments

• The experiments performed on the data set involve the following

steps:

– determining a baseline

– running several machine learning algorithms on the data set

– evaluating the results by comparison with the baseline

• All results reported were obtained by performing 10-fold

cross-validation.

• The results will be presented as follows. . .

Learning to Classify NSUs 28

Learning to Classify NSUs - Experiments

• The tables show the recall, precision and f-measure for each class.

recall =
OK by system

total in data
prec =

OK by system

total by system
f =

(β2 + 1)pr

β2p + r

• To calculate the overall performance of the algorithm, we normalize

those scores according to the relative frequency of each class.

• The weighted overall recall, precision and f-measure, shown in the

bottom row of the tables, is then the sum of the corresponding

weighted scores.

NSU class recall prec f1

class1 — — —

class2 — — —

Weighted Score — — —

Learning to Classify NSUs 29

Baseline

Majority Class baseline

• The simplest baseline we can consider is to always predict the

majority class in the data, in our case Short Answer.

• This yields a 6.7% weighted f-score.

NSU class recall prec f1

ShortAns 100.00 20.10 33.50

Weighted Score 19.92 4.00 6.67

Learning to Classify NSUs 30

Baseline

One Rule baseline

• A slightly more interesting baseline can be obtained by using a

one-rule classifier, which chooses the feature which produces the

minimum error.

• This creates a single rule which generates a decision tree where the

root is the chosen feature and the branches correspond to its

different values. The leaves are then associated with the class that

occurs most often in the data, for which that value holds.

• We use the implementation of a one-rule classifier provided in the

Weka toolkit (Witten & Frank 2000).

Learning to Classify NSUs 31

Baseline

One Rule baseline

• In our case, the feature with the minimum error is aff neg. It

produces the following one-rule decision tree, which yields a 32.5%

weighted f-score.
aff neg:

yes -> AffAns

no -> Reject

e -> ShortAns

NSU class recall prec f1

ShortAns 95.30 30.10 45.80

AffAns 93.00 75.60 83.40

Reject 100.00 69.60 82.10

Weighted Score 45.93 26.73 32.50

Learning to Classify NSUs 32

Baseline

Four Rule baseline

• We consider a more substantial baseline that uses the combination

of four features that produces the best results.

• The four-rule tree is constructed by running the J4.8 classifier

(Weka’s implementation of the C4.5 system) with all features and

extracting only the four first features from the root of the tree.

• This creates a decision tree with four rules, one for each feature

used, and nine leaves corresponding to nine different NSU classes.

Learning to Classify NSUs 33

Baseline

Four Rule baseline

nsu cont:

q -> nsu wh:

yes -> Sluice

no -> CE

p -> lex:

conj -> ConjFrag

p mod -> PropMod

f mod -> FactMod

mod -> BareModPh

e -> aff neg:

yes -> AffAns

no -> Reject

e -> ShortAns

Learning to Classify NSUs 34

Baseline

Four Rule baseline

• This four-rule baseline yields a 62.33% weighted f-score.

NSU class recall prec f1

CE 96.97 96.97 96.97

Sluice 100.00 95.24 97.56

ShortAns 94.34 47.39 63.09

AffAns 93.00 81.58 86.92

Reject 100.00 75.00 85.71

PropMod 100.00 100.00 100.00

FactMod 100.00 100.00 100.00

BareModPh 80.00 72.73 76.19

ConjFrag 100.00 71.43 83.33

Weighted Score 70.40 55.92 62.33

Learning to Classify NSUs 35

Machine Learners

• We are interested in comparing the results obtained using different

learning algorithms. We use four different machine learners, which

implement three different learning strategies.

• Two of the learners are based on the C4.5 decision tree algorithm:

– Weka’s J4.8 (Witten & Frank 2000), and

– the rule induction learner SLIPPER (Cohen & Singer 1999).

• We compare the results of these two systems with two other learners

that use different learning methods:

– a memory-based algorithm TiMBL (Daelemans 2003), and

– a maximum entropy algorithm developed by Zhang Le (Le 2003).

• They are all well established, freely available systems.

Learning to Classify NSUs 36

Machine Learners: C4.5-based systems

• The J4.8 decision tree learner is an implementation of a slightly

revised version of the popular C4.5 algorithm called Revision 8.

The Weka toolkit provides a friendly interface which allows for the

visualization of the output decision tree.

• SLIPPER uses iterative pruning and confidence-rated boosting to

create a weighted rule set.

We use the option unordered, which finds a rule set that separates

each class from the remaining classes, giving rules for each class.

This yields slightly better results than the default setting.

Unfortunately, it is not possible to access the output rule set when

cross-validation is performed.

Learning to Classify NSUs 37

Machine Learners: TiMBL

• As with all memory-based learning algorithms, TiMBL computes

the similarity between a new test instance and the training instances

stored in memory using a distance metric.

• As a distance metric we use the modified value difference metric ,

which performs better than the default setting (overlap metric).

• In light of recent studies (Daelemans 2002), it is likely that the

performance of TiMBL could be improved by a more systematic

optimization of its parameters, as e.g. in the experiments presented

in (Gabsdil & Lemon 2003). Here we only optimize the distance

metric parameter and keep the default settings for the number of

nearest neighbors and feature weighting method.

Learning to Classify NSUs 38

Machine Learners: Maximum Entropy

• Our final experiment used a maximum entropy algorithm, which

computes the model with the highest entropy of all models that

satisfy the constraints provided by the features.

• The maximum entropy toolkit we use allows for several options. In

our experiments we use 40 iterations of the default L-BFGS

parameter estimation (Malouf 2002).

Learning to Classify NSUs 39

Machine Learners: Results

• Although the classification algorithms used implement different

machine learning techniques, they all yield very similar results,

around an 87% weighted f-score.

• The maximum entropy model peforms best, although the difference

between its results and those of the other algorithms is not

statistically significant.

Learning to Classify NSUs 40

Results - SLIPPER

NSU class recall prec f1

CE 93.64 97.22 95.40

Sluice 96.67 91.67 94.10

ShortAns 83.93 82.91 83.41

AffAns 93.13 91.63 92.38

Reject 83.60 100.00 91.06

RepAffAns 53.33 61.11 56.96

RepAck 85.71 89.63 87.62

HelpReject 28.12 20.83 23.94

PropMod 100.00 90.00 94.74

FactMod 100.00 100.00 100.00

BareModPh 100.00 80.56 89.23

ConjFrag 100.00 100.00 100.00

Filler 100.00 62.50 76.92

Weighted Score 86.21 86.49 86.35

Learning to Classify NSUs 41

Results - Weka’s J48

NSU class recall prec f1

CE 97.00 97.00 97.00

Sluice 100.00 95.20 97.60

ShortAns 89.60 82.60 86.00

AffAns 92.00 95.80 93.90

Reject 95.80 80.70 87.60

RepAffAns 68.00 63.00 65.40

RepAck 85.00 89.50 87.20

HelpReject 22.20 33.30 26.70

PropMod 100.00 100.00 100.00

FactMod 100.00 100.00 100.00

BareModPh 80.00 100.00 88.90

ConjFrag 100.00 71.40 83.30

Filler 56.30 100.00 72.00

Weighted Score 87.62 87.68 87.29

Learning to Classify NSUs 42

Results - TiMBL

NSU class recall prec f1

CE 94.37 91.99 93.16

Sluice 94.17 91.67 92.90

ShortAns 88.21 83.00 85.52

AffAns 92.54 94.72 93.62

Reject 95.24 81.99 88.12

RepAffAns 63.89 60.19 61.98

RepAck 86.85 91.09 88.92

HelpReject 35.71 45.24 39.92

PropMod 90.00 100.00 94.74

FactMod 97.22 100.00 98.59

BareModPh 80.56 100.00 89.23

ConjFrag 100.00 100.00 100.00

Filler 48.61 91.67 63.53

Weighted Score 86.71 87.25 86.66

Learning to Classify NSUs 43

Results - Maximum Entropy

NSU class recall prec f1

CE 96.11 96.39 96.25

Sluice 100.00 95.83 97.87

ShortAns 89.35 83.59 86.37

AffAns 92.79 97.00 94.85

Reject 100.00 81.13 89.58

RepAffAns 68.52 65.93 67.20

RepAck 84.52 81.99 83.24

HelpReject 5.56 77.78 10.37

PropMod 100.00 100.00 100.00

FactMod 97.50 100.00 98.73

BareModPh 69.44 100.00 81.97

ConjFrag 100.00 100.00 100.00

Filler 62.50 90.62 73.98

Weighted Score 87.11 88.41 87.75

Learning to Classify NSUs 44

Evaluation and Discussion of Results

• The four-rule baseline algorithm discussed above yields a 62.33%

weighted f-score. Our best result, the 87.75% weighted f-score

obtained with the maximal entropy model, shows a 25.42%

improvement over the baseline system.

System w. f-score

Majority class baseline 6.67

One rule baseline 32.50

Four rule baseline 62.33

SLIPPER 86.35

TiMBL 86.66

J4.8 87.29

Maximal Entropy 87.75

Learning to Classify NSUs 45

Evaluation and Discussion of Results

• It is interesting to note that the four-rule baseline achieves very high

f-scores with Sluices and CE—around 97%. Such results are not

improved upon by the more sophisticated learners.

• This indicates that the features nsu cont and nsu wh used in the

four-rule tree are sufficient indicators to classify question-denoting

NSUs.

• The same applies to the classes Propositional Modifier and Factual

Modifier. The baseline already gives f-scores of 100%.

• This is in fact not surprising, given that the disambiguation of these

categories is tied to the presence of particular lexical items that are

relatively easy to identify.

Learning to Classify NSUs 46

Evaluation and Discussion of Results

• Affirmative Answers and Short Answers achieve high recall scores

with the baseline systems (more than 90%).

• In the three baselines considered, Short Answer acts as the default

category . Therefore, even though the recall is high (given that Short

Answer is the class with the highest probability), precision tends to

be quite low.

• By using features that help to identify other categories with the

machine learners we are able to improve the precision for Short

Answers by around 36%, and the precision of the overall

classification system by almost 33%—from 55.90% weighted

precision obtained with the four-rule baseline, to the 88.41%

achieved with the maximal entropy model.

Learning to Classify NSUs 47

Evaluation and Discussion of Results

• The class with the lowest scores is clearly Helpful Rejection. TiMBL

achieves a 39.92% f-measure for this class. The maximal entropy

model, however, yields only a 10.37% f-measure.

• This shows that the feature parallel, introduced to identify this

type of NSUs, is not a good enough cue.

Learning to Classify NSUs 48

Conclusions and Future Work

We have presented a machine learning approach to the problem of Non

Sentential Utterance classification in dialogue.

• We have described a procedure for predicting the appropriate NSU

class from a fine-grained typology of Non Sentential Utterances,

using a set of automatically annotated features.

• We have employed a series of simple baseline methods for classifying

NSUs in our data set extracted from the BNC. The most successful

of these methods uses a decision tree with four rules and gives an

f-score of 62.33%.

• We then applied four machine learning algorithms to this data set

and obtained an f-score of approximated 87% for all of them.

Learning to Classify NSUs 49

Conclusions and Future Work

• This improvement, taken together with the fact that the four

algorithms achieve very similar results suggests that our features

offer a reasonable basis for machine learning acquisition of the

typology adopted.

• In future work we will integrate our NSU classification techniques

into an Information State-based dialogue system

(SHARDS/CLARIE) that assigns a full sentential reading to

fragment phrases in dialogue.

• This will require a refinement of our feature extraction procedure. It

will not be restricted solely to PoS input, but will also benefit from

other information that our system generates, such as dialogue

history and intonation.

