l& Université
Paris Cite

Evaluating a PoS Tagger

Guillaume Wisniewski
guillaume.wisniewski@u-paris. fr

September 2022

e you must submit a report in pdf format before September
29 9am. The report must be sent by email and include, for
each question, either the code allowing to answer it or a
precise answer.

e using google colab might a good idea if you do not have
access to a linux computer.

e do not hesitate to send me any corrections, comments or
suggestions to improve this lab!

This lab assumes that you know either how to use google colab (see https://colab.research.
google.com/# for an introduction) or python from the command line. While the latter solution
is far better (it is not always desirable to give your data to google and knowing how to use a
terminal is a useful skill in NLP!), the former allows you to start working on your lab without
installing anything on your computer.

You should also know:

e basic python programming (defining and using functions, iterations and conditions)

e how to use a dictionary.

1 Context

Part-of-Speech (PoS) tagging is the task that consists in assigning to each word of a sentence a
label describing its grammatical category (noun, verb, ...). Here are two sentences whose words
are labeled by their PoS:

lat least according to people of my generation.



(1) J aimerai peindre la porte en majorelle .
I love paint the door in majorelle .
Pron VErRB VERB DET Noun App Noun Punct

(2) Iel laporte avec panache .
They it wear with style
Pron ProN VERB ADP NouN Punct

In this two examples, the PoS allow to distinguish the two meanings of la porte.
A PoS tagger can be seen as a function that takes in a sentence and returns a list of labels such
that:

o there is a pre-defined set of possible labels (the tagset);
o the i-th element of the output list corresponds to the label of the i-th word of the sentence.

In practice, the input sentence has to be tokenized so that words can be easily (and unambigu-
ously) identified and the PoS tagger inputs is generally either a string in which “words” are all
separated by a space or directly a list of string, each string corresponding to a “word”. For in-
stance the sentence “I’m a great admirer of Ms. O’Neil’s work™ will (generally) be tokenized ei-
theras"I 'm a great admirer of Ms. O0'Neil 's work"oras["I", "'m", "a", "great", "admirer"
Note that transforming these two forms of tokenized sentences is trivial with the join and split

functions:

>>> s = "I 'm a great admirer of Ms. O0'Neil 's work"

>>> ss = s.split()

>>> SS§

['r', "'m", 'a', 'great', 'admirer', 'of', 'Ms.', "O'Neil", "'s", 'work'[l
>>> " " join(ss)

"I 'm a great admirer of Ms. O0'Neil 's work"

2 Using Spacy PoS tagger

In this lab, we will use the PoS tagger of Spacy, one of the most popular NLP library in python.

2.1 Installing Spacy

The following instructions can be used to install Spacy on a Unix-environment (Linux, MacOS
and, with some small modificaitons, Colab?):

2Spacy is already installed on Colab, but you have to download the French model by executing a cell containing
the command: !python -m spacy download fr.ore,ews,m



> python3 -m venv local
> ./local/bin/pip install spacy
> ./local/bin/python -m spacy download fr_core_news_sm

The first command will create a virtual environment, the second one install Spacy and the third
download the model we are going to use.

More information about virtual environments can be found on the moodle of the lecture. The
only thing that you need to know, is that to use the Spacy in your virtual environment you need
to run your scripts with python interpreter you just installed (. /local/bin/python).

2.2 Predicting the PoS tags of a sentence

To use Spacy in your program you have to import the library and load a model:

import spacy
fr_model = spacy.load('fr_core_news_sm')

By default, Spacy takes, as input, a “raw” sentences and predict several kind of information:
tokenization of the sentence into words, PoS tagging, dependency analysis, ... The following
code will predict only the PoS of sentence that has already be tokenized:

from spacy.tokens import Doc
def predict_pos(sentence, model):
model . tokenizer = lambda x: Doc(model.vocab, x.split())

return [token.pos_ for token in model (sentence)]

print(predict_pos("J' aime le chocolat", fr_model))

The model parameter corresponds to a Spacy model (the object returned by the spacy.load
function).

1. What is lambda function in python and why do we use such a function in line 4 ?
2. Explain the last line of the predict_pos function.

3. Write a function, that takes as input a list of sentences and returns a list of PoS annotations
(i.e. a list of lists of PoS)



3 Metrics for PoS Tagging

In the following, we will assume we have a fest set that contains pairs of (tokenized) sentences
and their gold PoS labels. We will denote x) the i-th sentence of our test set and y'” the
corresponding sequence of labels. The test set is made of n sentences: (x(’) y(’)) - We will
also denote x; the j-th element of the sequence x. So the j-th word of the i-th sentence of the
test set is xﬁ’) and its label y(’) We will use an hat to distinguish between predicted label (such as
$; and the corresponding gold label y;.

Several metrics can be defined to evaluate the quality of a PoS tagger:

o the (sentence) accuracy corresponds to the proportion of sentences of the test set for
which all labels are predicted correctly:

— X Z (l) — "(t) (D

where 1 is the indicator function that returns 1 if its predicate is true and O otherwise.

o the micro (word) accuracy corresponds to the proportion of word in the test set for whose

label is correctly predicted:
(t) A(l)
2
#Words ZZ )

o the macro (word) accuracy corresponds to the average of the accuracy computed for each
possible PoS label.

4. Why do we (have to) consider tokenized sentences to evaluate a PoS tagger?
5. Implement each of the evaluation metric defined in this section.

Sometimes it is more meaningful to evaluate a PoS tagger in terms of error rates:

o the (sentence) error rate corresponds to the proportion of sentences of the test set for
which at least one label is mispredicted:

— X Z y(l) (l) (3)
o the (word) error rate corresponds to the proportion of words of the test set for which the

label is mispredicted:
(l) A(l)
#words Z Z i 7Y @

6. How can these new metrics be computed easily (i.e. by using the functions you have
already implemented)




4 Estimating PoS Tagging Performance

In this section we will consider the corpus contained in the file sequoia.test.json. This
corpus can easily be loaded in python with the following code:

import json
corpus = json.load(open("sequoia.test.json", "r"))

The variable corpus is a list of dictionaries, each dictionary contains two keys, tokenized_sentence
and gold_tags the meaning of wich is obvious.

7. How many sentences and words are there in the Sequoia corpus?

8. Evaluate the performance achieved by the tagger described in Section 2 on the corpus.
Interpret.

9. Write a function that evaluate the performance of a PoS tagger (with a user-provided
evaluation function) on n% of the sentence chosen randomly from a corpus (both n and
the corpus should be parameter of the function). Remember that:

o the sample function of the random module can be used to sample elements from a
list.

e its possible to pass function as parameters in python:

i |def add(a, b):
2 return a + b

4+ |def print_squared(func, a, b):
5 print(func(a, b) ** 2)

7 |print_squared(add, 2, 2)

In the two following questions, we will only consider the word error rate metric.

10. Draw randomly 1,000 corpora containing half of the sentences of the original corpus and
evaluate the PoS tagger on each of these corpus. What are the largest and the smallest
scores achieved? Draw an histogram representing the scores distribution. What can you
conclude?

11. Compute the accuracy of the PoS tagger estimated on 10%, 20%, 30%, 40%, 50%, 60%,
70%, 80% and 90% of the test set. For each corpus size, you will report the accuracy
averaged over 10 samples of the original data as well as the standard deviation. How close
is this accuracy to the accuracy measured on the whole corpus. Conclude.



5 Out-of-Domain Evaluation

We will now consider three additional test sets: the first one, Minecraft contains sentences
extracted from discussions between Minecraft players, the second one GSD contains sentences
grabbed from the web (e.g. from Wikipedia) and the last one ParisStories is a corpus of
oral French. The last two corpora are part of the Universal Dependencies project (https://
universaldependencies.org/)

12. Do you think that the error rate estimated on Sequoia is representative of the performance
that the PoS tagger will obtain on these test sets?

13. Evaluate the performance of the PoS tagger on these two corpora. What can you conclude?



